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ABSTRACT 

When a solid of nonuniform concentration is stressed, a flux of atoms is produced by not only just the 
concentration gradient but also a potential gradient. This latter effect is traditionally termed a stress-assisted 
diffusion by a chemical potential gradient. This potential depends, among other possible causes, the external 
load-induced stresses as well as those necessitated by a nonuniform concentration. A nonuniform 
concentration is accompanied by a state of eigentransformation, which, in view of its dependence on the 
associated molar volumes, may be called a chemical eigentransformation (or chemical strain for short). 
Chemical eigentransformations are, in general, incompatible and must be, in turn, accompanied by 
geometrically necessary elastic transformations. Such types of concentration-induced stresses are coupled to 
the ordinary load-affected stresses in the strain energy portion of the free energy. The derivative of the free 
energy with respect to the chemical eigentransformation is a generalized energy momentum tensor, which 
tends to the energy momentum tensor of Eshelby as the eigentransformation tends to the identity 
transformation. At the same time, the chemical potential deduced from the free energy is a functional of the 
load and concentration. It becomes a functional of only the load when the concentration is uniform. The 
diffusion promoted by such a load-induced potential are commonly known to be linearly coupled to the 
elastic field. The coupling disappears when the load-induced elastic field is quasi-static. Our coupled 
equations are built on the full nonlinear energy momentum tensor and the stress-assisted diffusion persists, as 
long as the elastic deformation is nonuniform. 
     A one-dimensional introduction to chemical strains and stresses is used in this paper to illustrate the roles 
of a generalized energy momentum tensor in chemical potentials and the associated bulk and surface 
diffusion. The general three-dimensional equations are used to demonstrate the effects of singularly 
nonuniform stress states on diffusion.  

 
1  INTRODUCTION 

The effect of a nonuniform elastic stress on diffusion is a flux of atoms driven by a stress potential 
V. In the context of linear elasticity, this potential is commonly taken to be the trace of the stress 
tensor σ and the associated diffusion equation is kk
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where  c(x,y,z,t) is the concentration and all the symbols have the usual meaning. Applying the 
above to the situation where c is initially uniform everywhere, one reaches the conclusion that the 
solution for very short times is governed by 
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Since , elastic stresses do not drive diffusion even if they are singularly nonuniform. It 
was shown in [1], however, that the stress potential V is actually more than just the trace of the 
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stress tensor. This is particularly true when the underlying solid is anisotropic [2]. In this paper the 
dependence of the stress potential on the energy momentum tensor, which is termed a chemical 
stress, is illustrated via a one-dimensional formalism. The general three-dimensional equation is 
then introduced to examine the effect of a singularly nonuniform stress field on crack-tip 
diffusion. 
 
 2  FORMULATION 
Let be a mathematical one-dimensional reference body with reference points Z, , 

where L is the total length. A one-dimensional material body is fabricated by placing C (  

mol/m of a mixture at Z ( C (  may be taken to be the total molar concentration at Z if the cross-

sectional area of is 1 m
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ZB 2). Since the molar length of such a one-dimensional material is a 

material property, the length, L, of the reference body and a prescribed C ( define the length of 
the fabricated body. To fix ideas, consider a binary mixture defined by 
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where are mole fractions. Since the two mole fractions are not independent, we express 
them in terms of a single mole-fraction value x as follows 
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We denote the isothermal stress-free molar length by ( )x . Then, ( )C∗ ∗λ = x is merely an 
eigen-stretch ratio such that an element dZ in BZ is transformed into a stress-free element 

. Such a transformed state is usually redefined in terms of a conveniently chosen 
uniform state defined by  

SFdZ dZ∗= λ
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The transformation from the mathematical reference body BZ to a uniform material reference body 
B defined by eqn (5) is simply 
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For nonuniform states defined by C C1 10 1 2 20C  , C C C∗ ∗ ∗ ∗ ∗ ∗= + ∆ = + ∆ , the following identities apply: 
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where i  are the partial molar length and i iC C C∆ − i 0= the nonuniform concentration variables 
defined per unit length of the uniform state and are expressed in X. They are respectively defined 
by 
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The eigen-stretch ratio , which relates dZ∗Λ

=

(X)

SF to dX, is now clearly defined. Since the eigen-
stretch ratio depends only on the composition of the mixture, it may be referred to as a chemical 
stretch ratio. If we use x x to define the spatial position of the one-dimensional body, then 

the total stretch ratio Λ , elastic stretch ratio 

( )X

( )e XΛ and ( )X∗Λ  are related by 
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which will be used to define the free energy. 
     Let be the Helmholtz free energy per unit length of the material reference body B 
in X.  We have 
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where A  is the molar Helmholtz energy, WSF  the strain energy per unit length of stress-free 
material, GSF the stress-free molar Gibbs energy, and W the strain energy per unit length of the 
uniform material body, all defined for isothermal conditions. It follows from the thermodynamic 
identity 
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which is the full chemical potential that must be used in studying stress-assisted diffusion. It is 
noted that the quantity associated with the partial molar length is the energy momentum tensor in 
one dimension.  In this sense it may be referred to as a chemical stress, which may be split into 
two parts, a complimentary energy density portion and a stress term, i.e. 
 ( )SF e SF eW  W 1  = complimentary energy density - =− Λ σ − Λ − σ σ σ−       . (15) 
The one-dimensional stress-assisted diffusion is, therefore, governed by 
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The three-dimensional counterpart of the above is 
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which is to be compared with eqn (1). It is noted that the diffusion is now dependent on the 
nonuniform elastic stress even though 2

kk 0∇ σ = . The diffusion around a crack tip is examined in 
this paper via the use of this equation. 
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