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ABSTRACT 

Traditional phenomenological constitutive relationships sometimes fail in the description of mechanical behaviour of 
plain concrete. In such circumstances more refined models are necessary, which takes into account the multiphase 
structure of the material. This paper presents a generalised finite element formulation, which incorporates solid and 
fluid phases together with a temperature field. The model is developed to obtain time-dependent solutions of 2-D 
cases, such as concrete gravity dams subjected to loading-unloading cycles, non-homogeneous specimens subjected 
to thermo-mechanical effects, etc. A fully coupled cohesive-fracture discrete model, which includes thermal and 
hydraulic loads, is adopted to describe crack nucleation and propagation. The evolution of fractures leads to 
continuous topological changes of the domain and these are handled by systematic local remeshing of the domain and 
by a continuous change of fluid and thermal boundary conditions. In the adopted approach, cracks may nucleate 
everywhere depending only on the stress field and propagate along paths and with a velocity of the tip that is a priori 
unknown. The determination of the crack path and the velocity of the tip propagation represent an important part of 
the solution, as the temperature and stress fields and allows for correct updating of the domain. Governing equations 
are firstly presented together with their space discretization. The solution procedure is finally discussed in particular 
as far as the projection of the solution between two successive meshes is concerned. 

 
1 INTRODUCTION 

The overall mechanical behaviour of cementious materials as concrete is the result of their complex 
mesolevel structure and chemical transformations during the ageing process. Traditionally, all these 
aspects are not considered and phenomenological relationships are introduced for the description of the 
mechanical behaviour of such materials. Sometimes this practical approach is sufficient to explain and 
model the observed experiences, but in certain circumstances does not. This is for instance the case of the 
alkali aggregate reactions, which depend on local temperature, humidity and stress and result in 
macroscopic cracking of massive concrete. Recent progress in computational multifield mechanics, when 
applied to cementitious materials opens the perspective to obtain not only better estimates of the 
mechanical behaviour of concrete structures, but also deeper insigth into the degradation as a result of the 
interaction of the material components (e.g. Meschke and Grasberger [1]). 

The present paper describes a numerical model in which cracking of concrete is caused not only by 
applied loads, as usual, but also by the pressure of water present from the casting operations and/or 
percolating from the boundaries (hydraulic fracture) and by hydration heat and/or by environmental 
temperature changes. In the present formulation fully saturated conditions and cohesive crack behaviour 
are assumed. Crack can nucleate and propagate everywhere depending on the stress field evolution. This 
problem is handled according to the procedure described in Secchi, Simoni [2]. 

 
2 MATHEMATICAL MODEL 

The mathematical model follows from Lewis and Schrefler [3]. Within the framework of Biot 
theory, non-isothermal, quasi-static conditions, small displacements and displacement gradients are 
assumed. The mechanical behaviour of the solid is dependent on the effective stress ij'σ  defined, 
following Biot and Willis as: 
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εrs being the total strain tensor, p the fluid pressure, δij the Kronecker symbol, α =(1-KT/KS) Biot’s 
coefficient, which accounts for small volumetric strain due to pressure, KT the bulk modulus of the 



overall skeleton and KS the averaged bulk modulus of solid grains.  εT is the strain associated to 
temperature T changes, according to cubic expansion coefficient αs. A Green-elastic material is assumed 
with cijrs elastic coefficients dependent on the strain energy function W.  

The linear momentum balance for the mixture (solid plus water), in weak form, hence containing the 
natural boundary conditions, may be written as:  
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where Ω is the domain of the initial boundary value problem,  Γe is the external boundary and Γ′ the 
boundary of the fracture and process zone. δεij is the strain associated with virtual displacement δui, ρ the 
density of the mixture, gi the gravity acceleration vector, ti the traction on boundary Γe and ci the cohesive 
tractions on the process zone as defined in the following.  

Forced conditions fixed the field variable values along the constrained boundary and completely 
define the problem. The fracturing material in the process zone generally undergoes mixed mode crack 
opening, which is modelled Margolin [4] and Dienes [5] proposals.  

As far as water transfer mechanism is concerned, Darcy’s law with constant absolute permeability is 
assumed for the fluid fully saturated medium surrounding the fracture. Within the crack the Poiseuille is 
assumed to be valid: permeability is not dependent on the rock type or stress history, but is defined by 
crack aperture only. Incorporating Darcy’s law, the weak form of the mass balance equation for water in 
all the domain, except for the fracture zone, is given by: 
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where Ω  is the domain of the fluid field, δp is a continuous pressure distribution satisfying boundary 
conditions, n the porosity, Kw the bulk modulus for liquid phase, αw the thermal expansion coefficient of 
water, s

iv  the velocity vector of the solid phase, kij the permeability tensor of the medium, µw the dynamic 
viscosity of water, ρw its density and qw the imposed flux on the external boundary. In the last term of Eq. 
(3) wq  represents the water leakage flux along the fracture toward the surrounding medium. This term is 
defined along the entire fracture, i.e. the open part and the process zone.  

Incorporating Poiseuille law into the water mass balance equation within the crack results in: 
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which represents the fluid flow equation along the fracture. In this equation, Ω′ and Γ′ are the domain and 
the boundary of the fracture. The last integral in eq. (4) is related to leakage flux into the surrounding 
porous medium across the fracture borders and is of paramount importance in hydraulic fracturing 
techniques. It can be expressed by means of Darcy’s law using the permeability of the medium 
surrounding the cracked area and pressure gradient generated by the application of water pressure on the 
fracture lips. Further investigation is probably necessary for the permeability in correspondence to the 
fracture tip: surrounding concrete is in fact not completely saturated (fluid lag formation) and the 
permeability of the first wetting of a partially saturated sample could represent better the real conditions 
of the fluid field in this zone.   



When mechanical terms are neglected, internal energy depends on temperature only and is related to 
heat capacity of the mixture at constant volume Cv. Volume heat sources (s being the strength) are 
retained and, in the present application, they represent heat production due to hydration of concrete, but, 
in general they may represent other coupling effects between stress and thermal fields. Source terms may 
also arise along the boundary are on the contrary dropped. The weak form of the energy balance takes the 
form 
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being δΤ an admissible virtual temperature  q  conv
i  and qi the convective and imposed heat flux normal 

to the boundary. Fourier’s law is used as constitutive assumption for heat flux (λij being the effective 
thermal conductivity tensor), and Newton’s law to represent convective flux (being h the convective heat 
transfer coefficient and T∞ the temperature in the far field of the undisturbed surroundings and ni the 
outward normal to the boundary), 
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The governing equations (2)-(5) are firstly discretized by means of the Galerkin procedure, then 
solved simultaneously to obtain the displacement and pressure and temperature fields together with the 
fracture path. The topology of the domain Ω and boundary change with the evolution of the fracture 
phenomenon. In particular, the fracture path, the position of the process zone and the cohesive forces are 
unknown and must be determined during the analysis.  

 
3 DISCRETIZED GOVERNING EQUATIONS AND SOLUTION PROCEDURE 

Space discretization of equations (2)-(5), incorporating the constitutive equations, results in the 
following system of time differential equations (dot represents time derivative) at element level 
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Adopting the usual symbols [3], the submatrices of eq. (7) are: 
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In Eq. (7f) c&  represents the cohesive traction rate and is different from zero only if the element has 

a side on the lips of the fracture ΓEcrack. Given that the liquid phase is continuous over the whole domain, 
leakage flux along the opened fracture lips is accounted for through eq. (7d) together with the flux along 
the crack. Finite elements are in fact present along the crack, as previously stated, which account only for 
the pressure field and hove no mechanical stiffness. In the present formulation, non-linear terms arise 
through cohesive forces in the process zone and permeability along the fracture. Further nonlinear terms 
could be related for instance to the dependence of medium permeability on porosity and porosity on 
volumetric strain.  

Global equations are assembled in usual way and can be integrated in time by means of the 
generalized trapezoidal rule [3]. This yields the algebraic system of discretized equations, written for 
simplicity in a concise form as 
 1nn1n1n +++ += ZVxA  (8)  
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As usual, n represents the time station and θ  the time discretization parameter. Implicit integration 
is used in the following applications.  

Because of the continuous variation of the domain as a consequence of the propagation of the 
cracks, also the boundary and the related mechanical conditions change. Only the forced boundary 
conditions need to be imposed explicitly, as the natural ones are accounted for by the weak statement of 



the governing equations. To this scope, the part of the boundary where forced boundary conditions do not 
change during the analysis is firstly detected and the related conditions are imposed on eq. (8). For the 
remaining boundary, updated at each time step, boundary conditions are imposed by means of the 
Lagrange multiplier method. This requires the system (8) to be amended with a set of equations that 
embody the constraint conditions and change dynamically as the solution proceeds. This allows not only 
to represent the moving cracks, but the application of varying external loads, for instance a varying level 
of dammed water in a reservoir. 

 
Figure 1: Multiple advacing fracture step at the same time station. 

At each time station tn, j different tip advancements are possible (Fig. 1). Their number in general 
depends on the chosen time step increment ∆t and adopted crack length increment a. In the following, 
index m represents the total number of calls of the nonlinear algorithm solver (Newton Raphson in the 
applications) and T (m) is a function giving the time corresponding to eah value of index m.  

For solution purposes, at a generic iteration Eq. (8) is rewritten as 
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Rk being the residuum at the current iteration. Differentiation of the residuum with respect to the 
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If the capacity matrix is independent of the unknowns, i.e. S,x ≅0, and permeability can be assumed 
as constant during the iteration process, i.e. H,x ≅0, the coefficient matrix is also independent of the 
unknowns, i.e. Am+1,x ≅0, and the tangent matrix AT becomes 
 k

x1m1m
k
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The last term of Eq. (12) depends the cohesive forces only, which simply results in an updating of 
the stiffness matrix. The required increment of the unknowns ∆xk is simply obtained as  

 kk
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Particular care must be used in handling the term Vn of eq. (8). It results from time discretization and 
represents the effects of the unknowns calculated at time station n on the solution at station n+1.  

Let us consider the solution on the initial domain Ω0, which is calculated on the initial spatial 
discretization (mesh) M0 by means of eq. (8). It is assumed that no fracture nucleation or propagation 
occurs, hence the mesh M0 is always referred to. At m+1, t= T (m) let the conditions for nucleating or 
propagating of fracture/s be attained at least in one point. Fracture/s evolution requires topological 
changes in the domain Ωm≡Ω0 and the boundary is consequently updated by introducing one or more new 



nodes {N} as previously discussed. A discretization of the new domain Ωm+1 is then required for the 
numerical solution and the new mesh Mm+1 is built. The solution of Eq. (8) is now sought using mesh 
Mm+1, whereas the solution at the previous step m, hence term Vm, is known on Mm (≡M0). Transfer 
operators based on element shape functions, when applied to nodal values of the field variables of Mm 
and Mm+1, are not sufficient to guarantee the fulfilment of the system (8) at time station n on the new 
mesh. In the present approach, the projection is directly applied to forces Vm, as defined by Eq. (9), 
requiring them to be mechanically equivalent between the two meshes. Not only a local balance is in this 
way obtained, but a high computational efficiency, independent on and increasing with order of 
approximations. This mapping can be written as  
 ( ))()(~

mm1mm Ωℵ=Ω + VV  (14) 
being ℵ  a suitable consistent transfer operator. Then, terms xm are recalculated on domain Ωm, i.e. 

using the new mesh Mm+1  It is necessary to recall that domain Ωm+1 presents updated boundary conditions, 
i.e. a nucleated or advanced fracture and nodes doubled along the last advancement of the fracture, 
whereas in the previous mesh continuity was present along the sides of the advanced part of the fracture. 
Multipoint constraints are introduced in correspondence of the master-slave nodes {N} immediately 
before the apex node, eliminating in this way the discontinuity of the field variables created by the latest 
advancement of the crack (eg. nodes P and P’ in Fig. 1 when j=1). The only discontinuities allowed are 
the ones present at time station n, if present. The domain Ωm is hence recreated with the discretization 
Mm+1  and the relative (known) boundary conditions are fixed. The solution is then repeated until 
convergence of the Newton-Raphson procedure is obtained. This results in the determination of unknown 
xm on mesh Mm+1. Multipoint constraints are then relaxed and the solution procedure continues. 

The recalculation step is not strictly necessary and could be dropped. In the applications it is 
however made in order to avoid the diffusion of numerical errors ensuing from the updating of the mesh 
and projection of the variables. In fact it guarantees that discretized governing equations are fulfilled at 
time station tn also on the mesh Mm+1. Further, mesh Mm+1 is finer than the previous one, hence it allows 
for the definition of error measure and/or to perform convergence checks of the solution.  
 

4  REFERENCES 
[1] S. Secchi, L. Simoni, Cohesive fracture mechanics for a multi-phase porous medium, International Journal for 

Computer-Aided Engineering and Software, 5-6(2003), 675-698. 
[2]  Meschke G. And Grasberger S., Numerical modeling of coupled hygromechanical degradation of cementious 

materials. J. of Eng. Mech, ASCE, 129, 383-392, 2003. 
[3] Lewis R.W. and Schrefler B.A., The finite element method in the static and dynamic deformation and 

consolidation of porous media, Wiley, 1998. 
[4]  Margolin, L.G., A generalized Griffith criterion for crack propagation, Engineering Fracture Mechanics, 19, 

539-543, 1984. 
[5]  Dienes, J.K., Comments on „A generalized Griffith criteria for crack propagation”, Engineering Fracture 

Mechanics, 23, 615-617, 1986.  
 


