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The study of the  dissipation effects during fracture of elastic bodies represents a significant interest from 

both  fundamental and  applied viewpoint. An establishment of quantitative balance between the energy influx to the 
destruction  zone  from external sources, and the energy liberated at fracture taking into account  self-heating effects 
during fracture and their influence on the  fracture dynamics is not yet solved problem of the theory of fracture. 
Meanwhile, heating effects arising at deformation and fracture of macrobodies as a result of dissipation processes of 
the various nature (plastic and/or viscoelastic deformation of a material, internal friction, etc.) can essentially modify 
physical properties of a material (through corresponding heat-flux related parameters) and moreover may 
appreciably  affect the dynamics of fracture. 

Let us consider thin plate containing a tensile crack of the size 2a, affected by stretching pressure p. It is 
well-known that the plastic-deformation zone (of size d), located just at the crack tip, provides a stabilizing role, 
since effectively absorbs a part of the elastic energy allocated at disclosing of a crack. Meanwhile, the plastic 
deformation of a material expressing an irreversible redistribution of dislocations in a plastic zone, is accompanied 
by the intensive energy dissipation  which results in the local heating of the near-crack-tip zone. 

Elastic energy EahapU /2 δλδ =  released during crack extension by aδ  (E being the Young modulus and 

λ   is the geometry-related factor) goes to the formation of new faces of a crack ahγδ2  (γ  -surface energy, h – 
the cross-section size of a plate) and partly to the work of plastic deformation aaG δ0  which then transfers to heat. 

When the elastic energy liberation rate surpasses a gain of surface energy and plastic work, the crack starts to 
propagate. Thus, the condition of stability may be written down as: 

 
aGFap 0
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where F is the crack-extension driving force. In order to consider nonisothermal crack propagation process self-
consistently one needs to describe thermal field near the crack. The analysis of temperature concentration near the   
crack tip requires the solution of a thermal problem. The effect of thermal "arrest" of the crack represents the 
phenomenon when the locally heated crack abruptly stops due to the plastic-work related dissipation, so that 
condition (1) is met. This phenomenon was observed in a number of recent experiments, however its theoretical 
description is not as yet completed. 

 
To study the crack-growth dynamics with the account for the energy dissipated near the crack tip zone 

requires to solve jointly the equation of motion of a crack and the equation of heat conduction. The system of the 
equations governing both temperature and crack-size evolution reads: 
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 here   ap)(ψ    and  2)( apϕ  represent the perimeter and the area of a plastic zone, respectively, �  is an  

average temperature of the  crack-tip zone, �v   being  thermal capacity of a material,  µ  is the Mott parameter 
(which is calculated in the quasistatical approach) describing kinetic energy of a crack.  

For the analysis of system of the equations (2) in the non-dimensional variables we approximate 

functions )(Tγ , G (T), )(Tψ and )(Tϕ  by the following expressions: 
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Let introduce non-dimensional variables: 

0a
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where  0a  - the characteristic size of a crack. Here T0 is the temperature of the environment, which corresponds 

to the isothermal fracture condition, provided 1<Φ
G

, and  0t  is the characteristic time of the problem 
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µat = ). The parameters which are included in system (2) are defined as follows: 
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With the account for the above notations the   non-dimensional system of the evolutionary equations (2) is written 
down as follows: 
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Crack arrest conditions 
 

Results of the numerical solution the system (3) are presented below. The following conditions are 
assumed: 1)0( =y , 0)0( =y� , 0)0( =Θ  , reflecting the initial condition (at 0=t ) of the  static  and not 

heated  crack .  The time dependencies of dimensionless crack velocity and its local temperature )(),( ττ Θy�  are 
shown in fig. 1 a, b. 
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Figure 1. The dependences )(),( ττ Θa�  obtained  at  fixed values of parameters: 11 =α , 

12 =α , 03 =α , 04 =α , W1=0.5, 1=β , 1=g , 0=η , 1=n , 3)( == constf τ . 
It is seen from Fig. 1 that the crack suffers only one stop (1 arrest) during propagation, and the peak of 

local temperature is reached near the point of the crack stop. The minimum of local temperature coincides with the 
moment of an exit of a crack from arrest; this tendency is observed for the multi-arrest case as well. Note that during 
arrest thermal subsystem is the only relaxing part of the entire system. This relaxation provides an efficient heat 
transfer from the warmed up crack-tip zone. As it is apparently seen from figure 1a, after rather long time, the 
temperature and growth rate of a crack reach some stationary values, which may be derived from the balance of 
local heating and a heat-conduction process. 
  It is seen, that the "arrest" has a finite duration time at∆ . We discovered that key parameters which 

determine the duration of the arrest are as follows: the cooling intensity W1, , plastic response constant 2α , and  the 
crack- driving force f. In fig. 2 the dependence is shown of the first "arrest" duration time on  the cooling  constant 
W1 (varying from 0 up to 1). Results are obtained under initial conditions 1)0( =a , 0)0( =a� , 0)0( =Θ  for 

the following values of the system parameters: 11 =α , 12 =α , 03 =α , 04 =α , 3=f , 1=β , 1=g , 

0=η , 1=n . 
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Apparently it is seen from the Figure 2, that there are values W1 when no "arrest" is observed. This is due to 

the high enough heat conduction   from the crack tip zone; therefore the crack is not capable to save up a sufficient 
amount of energy for the stop. As it is observed at MWW ≥1 , thus there is value W1 when "arrest" is impossible. 

 

 
 

Figure 2. Dependence of  the first "arrest"   duration on  the parameter W1. 
 
  Let us consider the influence W1 and 2α  on the number of "arrests". For this purpose we shall construct 

the "arrest" diagram (see Fig. 3).  In the coordinate plane W1 and 2α   the areas with different number of "arrests" 

are designated. I our calculations we assumed W1 varying  from 0.1 up to 2.0, and 2α  varying   from 1.0 up to 5.0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 3. The crack "arrest" diagram . 

 
  From the diagram well defined borders are seen of the                                                                                                                              
"arrests" number quantity  . Reduction of number of "arrests" with the increase of W1 and increase in their number 
with growth of parameter 2α  may be explained by the heating conditions at the crack tip.  


