
ON THE PRESENCE OF T-STRESS IN MODE II CRACK 
PROBLEMS 

 
M. R. Ayatollahi, Mahnaz Zakeri, M.M. Hassani 

Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran 
 

ABSTRACT 
The elastic stresses in a homogenous cracked body subjected to mixed modes I and II deformation have been 
derived by Williams as a set of infinite series expansions. The series solution is traditionally divided into 
symmetric and anti-symmetric components, defined as mode I and mode II, respectively. The first non-
singular term in the series solution, often called the “T-stress”, is constant and independent of the distance 
from the crack tip. According to the Williams’ definition, the T-stress exists only in mode I and vanishes in 
mode II. However, recent research studies have revealed several practical applications where significant 
values of T-stress are present in mode II. In this research, a modified definition for mode I and mode II is 
suggested in which the presence of the constant stress term in mode II is adopted. 
 

1  INTRODUCTION 
There are several methods for deriving the elastic stresses in a cracked body. In one of these 
methods, the stress components are displayed as a set of series expansions[1]. Williams [1] defined 
mode I and mode II by separating the series expansions to symmetric and anti-symmetric terms. 
The elastic stresses then could be derived for each mode from the corresponding part of the 
solution. The constant term in the series expansions, known as the T-stress, is independent of the 
distance from the crack tip. This term acts over a large distance from the crack tip; and more 
knowledge of it, is important for investigating brittle fracture in engineering materials [e.g. 2,3]. 
For example, it has been observed that when the T-stress in front of a mode I crack is negative, the 
crack tends to grow along its plane and when the T-stress is positive, the crack deviates from its 
original plane of growth [2,4]. 
     Based on the Williams’ definition [1] for mode II, the T-stress always vanishes in the 
antisymmetric part of the series solution. This definition has been accepted and used by many 
researchers [5-8]. However, the results of some recent experimental and analytical investigations 
[8-10] have revealed many practical applications in which large values of T-stress exist in mode II. 
Research studies show that ignoring the effect of T-stress in mode II can introduce significant 
inaccuracies in predicting mode II brittle fracture [10]. This implies that a more comprehensive 
definition for mode II deformation is required in which the presence of T-stress in mode II can be 
justifies. In the following sections, the series solution for the elastic stresses in a body containing a 
sharp crack is elaborated. Then new definitions for mode I and mode II are suggested which are 
consistent with previous findings and observations. 
 

2  WILLIAMS’ EIGEN SERIES SOLUTION 
Consider a homogeneous isotropic plate in a state of plane strain or idealized plane stress, which is 
bounded by two concurrent straight edges defining the solid within the angle α2  (Figure 1). In the 
absence of body force, the stress components in the polar co-ordinate system are: 
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 where Ψ  is the Airy stress function. According to the classical theories of elasticity, Ψ can be 
found by solving the well known bi-harmonic equation 



 
 

Figure 1: Stresses around the crack tip. 
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     To simulate a crack, α  is assumed to be equal to π . The boundary conditions on the traction 
free crack surfaces specify that: 
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Williams showed that the stress function Ψ  can be found as 
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The stress function ),( θrΨ can be divided into the even and odd parts with respect to θ . Then the 
first expression of each summation, the terms containing c1n, represents the symmetric part and the 
second expression, the terms containing c2n, represents the anti-symmetric part of the solution. 
     The summations in eqn (4) can be expanded for non-positive values of n. Let’s expand them 
only for n=1, 2. The resulting series expansion is: 
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where O(r5/2) represents the higher order terms which often be ignored near the crack tip. 
Introducing the function ),( θrΨ  to eqn (1), the polar stress components can be obtained: 
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which lead to the conventional expressions for elastic stresses near the crack tip: 
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where : 
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KI and KII which are called the mode I and mode II stress intensity factors, correspond to the well-
known singular stresses near the crack tip and the T-stress is independent of distance r from the 
crack tip. 

 
3  MODE I AND MODE II - CLASSICAL DEFINITIONS 

In the previous section, stress components near the crack tip were expressed by a set of series 
expansions. Williams described these stresses as symmetric and anti-symmetric stress fields 
representing mode I and mode II, respectively. Based on this definition and using the 
transformation equations, the elastic stresses derived earlier and presented by eqns. (7a-c) can be 
rewritten in the Cartesian co-ordinate system as: 
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for pure mode I or the symmetric part of the solution, and as: 
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for pure mode II or the anti-symmetric part of the solution. 
     According to the above equations, the term T is a constant stress parallel to the crack, which 
exists only in mode I and always vanishes for pure mode II. Although this definition has been 
accepted and used for many years, it is valid only for limited mode II specimens. In the next 
section, an improved definition for mode I and mode II is suggested which provides a more 
accurate expression for the state of stress in mode II. 
 
 
 



4  MODE I AND MODE II - MODIFIED DEFINITIONS 
The stresses in an elastic cracked body, which was written in the form of the series expansions 
(eqns. 6.a-c) can be divided into three parts with respect to the distance from the crack tip r: the 
singular term which is a function of r/1 , the constant stress term (independent of r), and the 
terms containing the higher orders of r (depending on r1/2 or higher). The singular term itself 
contains a symmetric and an antisymmetric component relative to θ.  
     The in-plane modes of crack deformation can be determined based only on the singular term. 
The improved definition suggests that pure mode I takes place when the antisymmetric component 
only in the singular term is zero. In contrast, pure mode II occurs when the symmetric component 
only in the singular term is zero. Any other combinations of the symmetric and antisymmetric 
components in the singular term can be attributed to mixed mode I/II. According to this definition, 
the non-singular terms of stress, including the constant term T and higher order terms O(r1/2) are 
retained in both mode I and mode II. The improved definition is consistent with the practical 
methods commonly used for determining the modes of crack deformation in engineering 
problems. For example, in finite element based codes such as ABAQUS, the singular stress 
components or their corresponding displacement components near the crack tip are used to 
calculate the ratio of stress intensity factors KI and KII. Then pure mode I and pure mode II are 
attributed to the cases where ∞→KK III and KI/KII= 0, respectively. 
     As mentioned earlier, in the new definition only the singular terms of the stress components are 
different for mode I and mode II series solutions, and the other terms are generally the same. Thus 
the T-stress can be present not only in pure mode I but also in pure mode II. It should be noted that 
the classical definition for mode II is a very particular case of the new definition in which the T-
stress and the symmetric components in the higher order terms are always considered to be zero. 
This implies that the classical definition is not a comprehensive one. 
     In the following section, some examples are described for crack specimens having non-zero 
values of T-stress in pure mode II. These examples can be used to support the new definitions 
suggested here for mode I and mode II. 

 
5  PRACTICAL SPECIMENS WITH T-STRESS IN MODE II 

Among the existing analytical solutions, the T-stress solution for a circular specimen containing an 
internal crack is studied here. An analytical solution based on the boundary collocation method 
(BCM) and the Green’s function, is available for the T-stress [8] when the specimen is subjected 
to diametrically applied concentrated forces. Mixed mode loading of this specimen is shown in 
Figure 2.  

 
Figure 2: A circular disk containing an angled center crack. 
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Figure 3: Mode I geometry factor FI versus crack angle for a/R=0.3 [8]. 

 
     The stress intensity factors KI and KII and the related geometry functions FI and FII were 
computed with the weight function technique [8]. Figures 3, 4, and 5 show the numerical values of 
KI, KII and T in dimensionless forms as FI, FII and T*. These values were calculated for the crack 
length ratio a/R=0.3. Figures 3 and 4 show that when °=θ 9.26 , FI (and consequently KI) is zero, 
but FII is non-zero. It means that the specimen is subjected to pure mode II for such a crack angle. 
Using the numerical results given in Figure 5, it is observed that the T-stress for pure mode II is 
not zero and has a significant value. This can be clearly justified by the improved definition for 
mode II but not with the classical definition given by Williams[1]. 
     There are also experimental and numerical results for other crack specimens, which indicate the 
presence of T-stress in mode II. For example, Ayatollahi et.al. [9,10] determined T-stress for two 
different mode II test configurations using finite element analysis. Their numerical results again 
confirm that the T-stress can be present in practical mode II specimens. 
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Figure 4: Mode II geometry factor FII versus crack angle for a/R=0.3 [8]. 

 
     Mixed mode brittle fracture has been studied by many researchers for different materials. 
Having taken the classical difinitions for deformation modes of a crack, they have often attempted 
to design test specimens capable of producing symmetric loading for mode I and antisymmetric 
loading for mode II (e.g. [11] and [12]). However, as described in this paper antisymmetric 
loading is a specific type of shear loading where in addition to KI, the T-stress also vanish [9]. 
Furthermore, ideal antisymmetric loading rarely occurs for real engineering components and in 
practice a considerable value of T-stress can be present for mode II loading. This suggests that 
most of the experimental results presented in the literature for mode II brittle fracture can be used 
only for a limited set of real applications where the crack tip is subjected to conditions very close 
to antisymmetric loading. 
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Figure 5 – The dimensionless parameter T* versus crack angle for a/R=0.3 [8]. 

 
6  CONCLUSIONS 

In the Williams’ solution, the elastic stress field near the crack tip is presented in the form of series 
expansions and mode I and mode II are defined as the symmetric and anti-symmetric parts of the 
expansion, respectively. Thus the T-stress exists only in mode I and vanishes in mode II. A new 
definition for mode I and mode II was suggested which is more accurate than the previous 
definition. Based on the new definition, the T-stress is not restricted to mode I and can be present 
in pure mode II. 
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