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ABSTRACT

Within the setting of analytical mechanics forces are regarded as a secondary concept, i.e. as being

derived from a potential. In the spririt of virtual work we may call a force a quantity that is

energetically conjugated to variations of kinematic quantities. If on the one hand these kinematic

quantities are considered as the (standard) spatial deformation map in continuum mechanics of

solids, i.e. relating the (initial) material placements to the (deformed) spatial coordinates, the

corresponding forces are the standard once. In the slang of differential geometry, these forces

live in the tangent space to the (deformed) spatial configuration. They are usually the given

Neumann data for the solution of a boundary value problem. If on the other hand the (inverse)

material deformation map, i.e. the map relating the spatial placement to the material coordinates,

is considered, the forces conjugated to these kinematic quantities turn out to be (configurational)

material forces. Material forces act in the tangent space to the (initial) material configuration. They

are results of the computation of a boundary value problem and serve to assess the tendency of

defects like cracks, dislocations, interfaces etc. to change their position with respect to the ambient

material. Since material forces contribute to a balance equation of material momentum, more or

less standard schemes can be invoked to a-posteriori compute discrete material forces for example

within a FE-setting.

1 INTRODUCTION

In this work we discuss material forces by the example of a coupled problem (e.g. thermo–
hyperelasticity) and continuously distributed heterogeneities (e.g. continuum damage) and
the calculation of the J-integral for this class of problems. Our developments are essentially
based on the exposition of the continuum mechanics of inhomogeneities as comprehensively
outlined by Maugin [7, 8], Gurtin [4] and our own recent contributions by Steinmann [12],
Steinmann et al. [14] and Denzer et al. [2]. Material (configurational) forces are concerned
with the response to variations of material placements of ’physical particles’ with respect to
the ambient material.
Thereby the algorithmic representation of the material balance of momentum resulting in
the notion of discrete material forces is proposed as the so called Material Force Method,
see Steinmann [11, 14]. First numerical concepts of material forces within the FE-method
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date back to Braun [1], who derived for the hyperelastic case node point forces from the
discretized potential energy with respect to the material node point positions, that contain
the material stress in the spirit of Eshelby [3]
In the case of continuum damage and thermo–hyperelasticity distributed material volume
forces evolves due to damage or temperature gradients, which coincides with the evolution of
continuous heterogeneities in the material. Thus the Galerkin discretization of the damage
or temperature variable as an independent field becomes necessary in addition to the defor-
mation field. The coupled problem will be solved using a monolithic solution strategy. The
resulting material node point quantities, which we shall denote discrete material node point
forces are demonstrated to be closely related to the classical J-integral in fracture mechanic
problems. In particular we investigate the behavior of the Material Force Method in the
case of cracked specimen while the damage zone or the temperature field evolves. Thereby
e.g. a shielding effect of the distributed damage field w.r.t. the macroscopic crack is clearly
demonstrated.

2 KINEMATICS AND KINETICS

In the material motion problem Bt denotes the spatial configuration occupied by the body of
interest at time t. Then Φ(x) denotes the non–linear deformation map assigning the spatial
placements x ∈ Bt of a ’physical particle’ to the material placements X = Φ(x) ∈ B0 of the
same ’physical particle’. Thus, the material placements are followed through the ambient
material at fixed spatial position, i.e. the observer takes essentially the Eulerian viewpoint.
Next, the material motion linear tangent map is given by the deformation gradient f = ∇xΦ

transforming line elements from the tangent space TBt to line elements from the tangent
space TB0. The spatial Jacobian, i.e. the determinant of f is denoted by j = det f and
relates volume elements dv ∈ Bt to volume elements dV ∈ B0.
For the material motion problem the quasi–static balance of momentum reads

−divπt = Bt −→ −DivΣt = B0 (1)

It involves the momentum flux πt, a two–point tensor, and the momentum source Bt, a
vector in material description with spatial reference called the material motion volume force
density.
The Piola transformation of πt is called the Eshelby stress Σt = Jπt · f t, alternatively the
terminology energy-momentum tensor or configurational stress tensor is frequently adopted.
The spatial motion volume force density with material reference is given by B0 = JBt.

3 CONSTITUTIVE EQUATION

For the material motion problem the free energy density ψt = jψ0 with spatial reference is
expressed in terms of the material motion deformation gradient f (or its inverse F ) and ad-
ditional internal variable α for a generic scalar or tensorial quantity, as ψt = ψt(f , α,Φ(x)),
where the explicit dependence on the material placement is captured by the field X = Φ(x)
The conjugated counterpart to the internal variable α is given by At = jA0 = −dαψt.
Then the familiar constitutive equations for the so-called Eshelby stress in B0 are given as
Σt = jπt · f t = ψ0I − F t

· Πt with Πt = ∂F Ψ0. Note that the distributed volume forces
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now take the following particular format with respect to the additional internal variable α

Bt = At ∇Xα− ∂Φψt + Bext
t (2)

where the first part is related to material heterogeneities and the second to material inho-
mogeneities.

4 DISCRETIZATION AND J-INTEGRAL

By expanding the geometry x elementwise with shape functions N k
x in terms of the positions

xk of the node points and by using a Bubnov-Galerkin finite element method based on the
iso–parametric concept, we end up with discrete algorithmic material node point (surface)
forces at the global node point K given by

F
h
sur,K = A

e

∫
Be

0

Σt
· ∇XN

k −Nk
ΦB0 dV, (3)

whereby we denote the material surface forces F
h
sur,K by ’sur’ in the diagrams later in the

example section. Furthermore we separate them into an internal (’int’) and a volume part
(’vol’)

F
h
int,K = A

e

∫
Be

0

Σt
· ∇XN

k dV and F
h
vol,K = A

e

∫
Be

0

Nk
ΦB0 dV (4)

Thus we have in summary the obvious result F
h
sur,K = F

h
int,K − F

h
vol,K .

Based on these results we advocate the Material Force Method with the notion of global
discrete material node point (surface) forces, that (in the sense of Eshelby) are generated
by variations relative to the ambient material at fixed spatial positions. Such forces corre-
sponding to the material motion problem are trivially computable once the spatial motion
problem has been solved.
Consider the resulting discrete material node point (surface) force F

h
sur,s acting on a crack

tip. The exact value Fsur,s can be approximated by the discrete regular surface part F
h
sur,r

and the discrete volume part F
h
vol of the discrete material node point (surface) forces Fsur,s ≈

−F
h
sur,r−F

h
vol. These in turn are balanced by discrete singular material surface forces F

h
sur,s

and (spurious) discrete internal material surface forces F
h
sur,i, which stem from an insufficient

discretization accuracy as −F
h
sur,r − F

h
vol = F

h
sur,s + F

h
sur,i. Note thus, that the sum of all

discrete algorithmic material node point surface forces F
h
sur,K corresponds according to Eq. 3

to the resulting value

Fsur,s ≈
∑

K∈Vh
0 \∂Vr,h

0

F
h
sur,K = F

h
sur,s + F

h
sur,i (5)

Thus an improved value for Fsur,s is obtained by summing up all discrete material node
point surface forces in the vicinity of the crack tip, see also Denzer et al. [2].

5 NUMERICAL EXAMPLES

As a first example we look at a hyperelastic material coupled to isotropic damage. Thereby
isotropic damage is characterized by a degradation measure in terms of a scalar damage
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Figure 1: Damage distribution at crack tip
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Figure 2: Discrete material node point surface, internal and volume forces and temperature
distribution in the vicinity of the crack tip

variable 0 ≤ d ≤ 1 that acts as a reduction factor of the local stored energy density of
the virgin material W0 = JWt per unit volume in B0 (or Wt = jW0 per unit volume in
Bt, respectively), which is supposed to be an objective and isotropic function in F (or f ,
respectively), see Liebe et al. [6]. The free energy density then reads ψt = ψt(d,f ,Φ(x)) =
[1 − d]Wt(f ,Φ(x)) and Y0 = −∂dψ0 = W0. In this case the distributed volume forces take
the particular format B0 = Y0∇Xd− ∂Xψ0 − F t

· bext
0
.

The second example consists of thermo-hyperelastic material with the free energy function
ψ0 = ψ0(F , θ; X) depending on the absolute temperature θ with the entropy density given as
S0 = −Dθψ0. Here the distributed volume forces results in B0 = S0∇Xθ−∂Xψ0−F t

·bext
0

,
see Kuhl et al. [5].
For a cracked specimen under mode I loading the discrete material forces and the distribu-
tion of the damage variable and the temperature variable are depict in Fig. 1 and Fig. 2,
respectivily.

6 Conclusion

The objective of this work was to exploit the notion of material forces within the frame-
work of isotropic geometrically non-linear continuum damage and thermo–hyperelasticity.
Thereby the Material Force Method, see e.g. Steinmann et al. [14] was combined with an
internal variable formulation of computational continuum damage mechanics and thermo–
hyperelasticity. This particularly leads to the notion of distributed material volume forces
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that are conjugated to the damage or the temperature gradient, respectively. To this end,
it was necessary to set up a two field formulation, i.e. the additional discretization of the
damage variable or the temperature as an independent field next to the deformation field.
With regard to fracture mechanics it could be shown that the evolving damage zone shields
the crack tip. Hence the driving material surface force at the crack tip is significantly less
than the applied external material load. This is the crucial difference with the hyperelastic
case, where both are equal.
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