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ABSTRACT 
A three-dimensional Virtual Crack Closure-Integral Method (VCCM) for arbitrary shaped hexahedron finite 
elements is presented in this paper. Conventional three-dimensional VCCM [1] generally assumes the use of 
hexahedron finite elements that are arranged in an orthogonal manner at the crack front. Furthermore, it is 
generally required that the sizes of elements across the crack front be the same. However, when crack front has 
some curvature, it is almost impossible to build a model that completely satisfies such conditions. 
 

1  INTRODUCTION 
In this paper a new development of three-dimensional virtual crack closure-integral method 

(3DVCCM, see [1] for example) is presented. In general, VCCM requires finite elements across the 
crack tip or crack front to be equally sized and symmetrically placed. These requirements must be 
followed to evaluate the energy release rate and the stress intensity factor accurately. However, such 
requirements pose strong constraints on the generations of three-dimensional finite element models. 
In this paper, a three-dimensional VCCM without such strong constraints is described. 

Virtual crack closure-integral method (VCCM), which is based on Irwin’s crack 
closure-integral [2], was first proposed for two-dimensional crack problems by Rybicki and 
Kanninen [3] and was extended to three-dimensional cases by Shivakumar et al. [1]. 
Three-dimensional VCCM in its original form assumes that the faces of finite element meshes at the 
crack front be orthogonally arranged, as shown in Figure 1. Also, their sizes across the crack front 
must be the same. However, in many cases, it is very difficult to place finite elements in such a way. 
For example, for the case of semi-elliptical surface flow, it is very convenient to generate a finite 
element model as shown in Figure 2. In this case, the elements are skewed and the sizes of their faces 
are not the same across the crack front. Fawas [4,5] proposed a method that allows the finite element 
arrangement at the crack front to be somewhat skewed and some useful results were obtained [6]. 
Abdel Wahab and De Roeck [7] presented a method to correct the width change for the problem of 
semi-elliptical surface flaw. However, the methods [4, 5, 7] seem to be slightly modified versions of 
the original three-dimensional VCCM which was proposed as an extension of two-dimensional one. 
Present authors think that the reason that the problems arose is in the original development of 
three-dimensional VCCM. That is, VCCM for three-dimensional problem was derived by adding 
thickness to that for two-dimensional case.  

In this paper, VCCM for skewed/non-symmetric finite element arrangement is derived and 
some numerical results are presented. 

 
2  THREE-DIMENSIONAL VCCM FOR SKEWED/NON-SYMMETRICALLY ARRANGED 

CRACK FRONT ELEMENTS 



We assume that the arrangement of finite elements at the crack front is as shown in Figure 2. 
On the plane of crack, the faces of finite elements are arranged as shown in Figure 3. We introduce 
two conditions on the mesh arrangement across the crack front. They are (i) the edge lines crossing 
the crack front must be straight (lines A-A’-A’’ and B-B’-B’’ in Figure 3) and (ii) the widths ∆  of 
the elements in the radial direction are the same as shown in Figure 3. We adopt a polar coordinate 
system whose origin is at point O where the extended lines of A-A’-A’’ and of B-B’-B’’ meet each 
other. The second condition can be restated that distances between points C-C’ and C’-C’’ are the 
same. However, the width  may vary place to place. Thus, we express ∆ ∆  as a function of angle θ . 
To describe the stresses and the displacements, a local Cartesian coordinates along the crack front are 
introduced, as depicted in Figure 3. x  and  local coordinate axes are perpendicular to and 
parallel to the crack front. The direction of  coordinate is perpendicular to the plane of crack. 
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energy  spent when crack opens for the area  which is shown in Figure 4, as: IGδ JS1
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The asymptotic solutions for stress and displacement at the crack face is given by(see [8], for 
example): 
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where EE =′  for plane stress and ( )21 ν−=′ EE  for plane strain case. r  is the distance from the 
crack front. The direction of r  and normal direction of the crack front make an angle φ (see Figure 
4). After some algebraic calculations on eq. (1), we derive a simple expression. 
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Figure 1: Three-dimensional VCCM with 20 
node serendipity elements which are arranged 
symmetrically across the crack front 

 
 

Figure 2: Three-dimensional VCCM applied to 
curved crack front with skewed/non-symmetrical 
mesh arrangement across the crack front 



where areas  and , as depicted in Figure 4, are expressed by: JS1
JS2
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We then define the energy release rate  based on its relationship with the stress intensity 
factor [2, 8], by: 
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The same can be applied to the cases of Mode II and III components. The area integral on  in the 
right hand side of eq. (5) can be computed by the nodal forces and nodal displacements.  
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where v  are the crack opening displacements at nodes on  and I
3

JS2 ( )JIP3 are the corresponding 

consistent nodal forces arising from the cohesive stress on . JS1

 

3  VCCM FOR UNEQUAL ELEMENT WIDTHS ACROSS THE CRACK FRONT 
As depicted in Figure 4, we assume that the widths of the elements across the crack front are 

different. We let the width of the element ahead the crack front be ∆  and that behind the crack front 
be ∆α , as shown in Figure 4. Here the constant α  represents the ratio of element widths across the 
crack front. Though Figure 4 implies that α  be equal or smaller than one, α  can be greater than one. 
We then slightly modify the right hand side of eq. (1) by using the constant α , as: 

( ) ( ) θ
π

φα
φπα

δ θ
θ ddcos22

cos2
1 2

1 0 rrR
E
Kr

r
KG II

I +
′

−∆
= ∫ ∫

∆    (7) 

 

 
 
Figure 3: Skewed/non-symmetric finite element 
face arrangement at the crack front 

 
 

Figure 4: VCCM computation for non-equal 
element widths across the crack front 



Thus, the energy release rate can be computed by: 
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where v  are the crack opening displacements at nodes on S  and I
3

J
2 ( )JIP3 are the corresponding 

consistent nodal forces arising from the cohesive stress on . The Mode II and III energy release 
rates can be given in the same fashion.  

JS1

 
4  NUMERICAL RESULTS  

The problem of through crack in a large panel subject to tension, as depicted in Figure 5 is 
presented. Young’s modulus and Poisson’s ratio are set to be 210 GPa and 0.3. All the boundaries, 
except for the top and bottom surfaces, are free from any stresses. We compare the results of present 
three-dimensional VCCM with analytical solution [9]. Also, we evaluated the stress intensity factors 
from the energy release rates which were computed in three different ways as listed below. 
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The stress intensity factors are then computed by II GEK ′= . 
The problem was first solved by an orthogonal mesh arrangement. The elements are 

symmetrically placed across the crack front, as shown in Figure 6 and the mode I stress intensity 
factor is evaluated along the crack front. When the stress intensity factor is evaluated from the energy 
release rate , the plane stress condition is assumed since the plate is very thin. The thickness ratio IG

Lt  is assumed to be 0.025 in this case. The widths of elements at the crack front is set to be 

 

          
 

(a)                                           (b) 
Figure 6: Finite element model used to analyze the 
through crack problem (an orthogonal mesh pattern) 
[(a) Mesh arrangement at the vicinity of crack front 
and (b) Overall view] 

 

 
 
Figure 5: Thin flat panel with a through 
crack 



e=16/1000 of half crack length a. The total numbers of elements and nodes are 16800 and 75376, 
respectively. 

In Figure 7, the computed stress intensity factor is compared with the analytical solution [9]. 
Difference between present solution and analytical one is 0.86% at the mid-thickness of the plate. At 
the free surface of the plate, the value of the stress intensity factor drops slightly. The same behavior 
was reported in Fawaz [4]. The stress intensity factor is computed accurately and the crack front 
element size e=16/1000 of a is verified to be small enough. We use the same size in the following 
analyses.  

We then arrange the elements on the plane of crack as shown in Figure 8. We chose two kinds 
of arrangements on the plane of crack. One has the ratio JJ S21S  or JJ SS 12  of areas of element 
faces across the crack front to be about 0.86 and the other has the ratio 0.6.  

The results are presented in Figures 9 and 10 for the ratios of element faces 0.86 and 0.6, 
respectively. In Figures 9 and 10, the stress intensity factor which was calculated by present method 
is designated by KI [0.75 S1 + 0.25 S2]. Stress intensity factors computed from the energy release 
rates calculated by the first, second and third of eq. (9) are designated to be  KI [S1], KI [S2] and KI 
[0.5 S1 + 0.5 S2], respectively. It is seen in Figures 9 and 10, except for KI [0.75 S1 + 0.25 S2] which 

 

 
 

(a)                                           (b) 
Figure 8: Non-symmetrical mesh arrangements for 
the through crack problem. (a) ratio S r 

 is 0.86 and (b) ratio r 
is 0.6 
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Figure 7: Comparison between the computed 
stress intensity factor by using the orthogonal 
mesh arrangement and the analytical solution

 
Figure 10: Distributions of the stress intensity 
factors along the crack front normalized by the 
analytical solution, for the case that the ratio 

r  is 0.6 JJ SS 21 /  o JJ SS 12 /
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Figure 9: Distributions of the stress intensity 
factors along the crack front normalized by 
the analytical solution, for the case that the 
ratio r  is 0.86 JJ SS 21 /  o JJ SS 12 /



is computed by present method, large magnitudes of oscillations are seen. KI [0.75 S1 + 0.25 S2] is 
very close to the analytical solution. 

 
5  CONCLUSION 

In this paper, a new development in VCCM technique for three-dimensional fracture analysis 
is presented. The proposed method does not pose strong constraints in finite element mesh 
arrangement at the crack front. Thus, processes in finite element model generation became much 
simpler.  

Though the results for more complex problems such as elliptical embedded crack and 
semi-elliptical surface flaw problems were analyzed, they are not presented in this paper due to the 
page limitation. Good agreements with analytical solutions [9] and existing numerical solutions [10] 
were obtained even when the elements are skewed at and not symmetric across the crack front.  
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