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ABSTRACT
A three-dimensional Virtual Crack Closure-Integral Method (VCCM) for arbitrary shaped hexahedron finite
elements is presented in this paper. Conventiona three-dimensional VCCM [1] generally assumes the use of
hexahedron finite elements that are arranged in an orthogonal manner at the crack front. Furthermore, it is
generaly required that the sizes of elements across the crack front be the same. However, when crack front has
some curvature, it is amost impossible to build amodel that completely satisfies such conditions.

1 INTRODUCTION

In this paper a new development of three-dimensional virtual crack closure-integral method
(3DVCCM, see[1] for example) is presented. In general, VCCM requires finite elements across the
crack tip or crack front to be equally sized and symmetrically placed. These requirements must be
followed to evaluate the energy rel ease rate and the stressintensity factor accurately. However, such
reguirements pose strong constraints on the generations of three-dimensional finite element models.
In this paper, athree-dimensional VCCM without such strong constraints is described.

Virtual crack closure-integral method (VCCM), which is based on Irwin's crack
closure-integral [2], was first proposed for two-dimensional crack problems by Rybicki and
Kanninen [3] and was extended to three-dimensional cases by Shivakumar et a. [1].
Three-dimensional VCCM initsoriginal form assumes that the faces of finite element meshes at the
crack front be orthogonally arranged, as shown in Figure 1. Also, their sizes across the crack front
must be the same. However, in many cases, it is very difficult to place finite elementsin such away.
For example, for the case of semi-elliptical surface flow, it is very convenient to generate a finite
element model as shown in Figure 2. In this case, the el ements are skewed and the sizes of their faces
are not the same across the crack front. Fawas[4,5] proposed a method that allows the finite element
arrangement at the crack front to be somewhat skewed and some useful results were obtained [6].
Abdel Wahab and De Roeck [7] presented a method to correct the width change for the problem of
semi-elliptical surface flaw. However, the methods [4, 5, 7] seem to be slightly modified versions of
the original three-dimensional VCCM which was proposed as an extension of two-dimensional one.
Present authors think that the reason that the problems arose is in the original development of
three-dimensional VCCM. That is, VCCM for three-dimensional problem was derived by adding
thickness to that for two-dimensional case.

In this paper, VCCM for skewed/non-symmetric finite element arrangement is derived and
some numerical results are presented.

2 THREE-DIMENSIONAL VCCM FOR SKEWED/NON-SYMMETRICALLY ARRANGED
CRACK FRONT ELEMENTS



We assume that the arrangement of finite elements at the crack front is as shown in Figure 2.
On the plane of crack, the faces of finite elements are arranged as shown in Figure 3. We introduce
two conditions on the mesh arrangement across the crack front. They are (i) the edge lines crossing
the crack front must be straight (lines A-A’-A’" and B-B’-B’’ in Figure 3) and (ii) the widths A of
the elementsin the radial direction are the same as shown in Figure 3. We adopt a polar coordinate
system whose origin is at point O where the extended lines of A-A’-A’" and of B-B’-B’’ meet each
other. The second condition can be restated that distances between points C-C' and C'-C’’ are the
same. However, thewidth A may vary placeto place. Thus, we express A asafunction of angle 4.
To describe the stresses and the displacements, alocal Cartesian coordinates al ong the crack front are
introduced, as depicted in Figure 3. x; and x, local coordinate axes are perpendicular to and

parallel to the crack front. The direction of x5 coordinate is perpendicular to the plane of crack.
When mode | component is considered without loss of any generalities, we can evaluate
energy JG, spent when crack opens for the area Sf which is shownin Figure 4, as:
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The asymptotic solutions for stress and displacement at the crack face is given by(see [8], for
example):
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where E' = E for plane stressand E' = E/(l— vz) for plane strain case. 7 isthe distance from the
crack front. The direction of r and normal direction of the crack front make an angle ¢ (see Figure
4). After some algebraic calculations on eqg. (1), we derive a simple expression.
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where areas Sf and SZJ , asdepicted in Figure 4, are expressed by:
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We then define the energy release rate G, based on its relationship with the stress intensity
factor [2, 8], by:
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The same can be applied to the cases of Mode |l and 11 components. The areaintegral on Sf inthe
right hand side of eqg. (5) can be computed by the nodal forces and nodal displacements.
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where v}, are the crack opening displacements at nodes on SzJ and (Pg,' ) are the corresponding

consistent nodal forces arising from the cohesive stress on Sf .

3 VCCM FOR UNEQUAL ELEMENT WIDTHS ACROSS THE CRACK FRONT
As depicted in Figure 4, we assume that the widths of the elements across the crack front are
different. We let the width of the element ahead the crack front be A and that behind the crack front
be aA , asshownin Figure 4. Here the constant « represents the ratio of element widths across the
crack front. Though Figure4 impliesthat « beequal or smaller thanone, « can be greater than one.
We then dightly modify the right hand side of eg. (1) by using the constant « , as:
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Figure 3: Skewed/non-symmetric finite element  Figure 4: VCCM computation for non-equal
face arrangement at the crack front element widths across the crack front



Thus, the energy release rate can be computed by:
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where v}, are the crack opening displacements at nodes on SZJ and (P?,' ) are the corresponding

consistent nodal forces arising from the cohesive stress on Sf . The Mode Il and |1l energy release
rates can be given in the same fashion.

4 NUMERICAL RESULTS
The problem of through crack in a large panel subject to tension, as depicted in Figure 5 is
presented. Young's modulus and Poisson’sratio are set to be 210 GPa and 0.3. All the boundaries,
except for the top and bottom surfaces, are free from any stresses. We compare the results of present
three-dimensional VCCM with analytical solution [9]. Also, we evaluated the stressintensity factors
from the energy release rates which were computed in three different ways as listed below.
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The stress intensity factors are then computed by K, =,/E'G, .

The problem was first solved by an orthogonal mesh arrangement. The elements are
symmetrically placed across the crack front, as shown in Figure 6 and the mode | stress intensity
factor isevaluated along the crack front. When the stressintensity factor is evaluated from the energy
releaserate G , the plane stress condition is assumed since the plateisvery thin. The thicknessratio

t/L is assumed to be 0.025 in this case. The widths of elements at the crack front is set to be
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e=16/1000 of half crack length a. The total numbers of elements and nodes are 16800 and 75376,
respectively.

In Figure 7, the computed stress intensity factor is compared with the analytical solution [9].
Difference between present solution and analytical oneis0.86% at the mid-thickness of the plate. At
the free surface of the plate, the value of the stress intensity factor drops slightly. The same behavior
was reported in Fawaz [4]. The stress intensity factor is computed accurately and the crack front
element size e=16/1000 of a is verified to be small enough. We use the same size in the following
analyses.

We then arrange the elements on the plane of crack as shown in Figure 8. We chose two kinds

of arrangements on the plane of crack. One has the ratio Sf / SQ] or SQ] / Sf of areas of element

faces across the crack front to be about 0.86 and the other has theratio 0.6.

The results are presented in Figures 9 and 10 for the ratios of element faces 0.86 and 0.6,
respectively. In Figures 9 and 10, the stress intensity factor which was cal culated by present method
is designated by K, [0.75 S; + 0.25 S]. Stress intensity factors computed from the energy release
rates calculated by the first, second and third of eg. (9) are designated to be K, [S{], K| [S;] and K,
[0.5S; +0.5S;], respectively. It isseenin Figures 9 and 10, except for K, [0.75 S; + 0.25 S;] which
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is computed by present method, large magnitudes of oscillations are seen. K, [0.75 S; + 0.25 S] is
very close to the analytical solution.

5 CONCLUSION

In this paper, a new development in VCCM technique for three-dimensional fracture analysis
is presented. The proposed method does not pose strong constraints in finite element mesh
arrangement at the crack front. Thus, processes in finite element model generation became much
simpler.

Though the results for more complex problems such as elliptical embedded crack and
semi-elliptical surface flaw problems were analyzed, they are not presented in this paper due to the
page limitation. Good agreements with analytical solutions[9] and existing numerical solutions[10]
were obtained even when the elements are skewed at and not symmetric across the crack front.

6 ACKNOWLEDGEMENT
Present investigation has partly been supported by JWES (Japan Welding Engineering
Society). The authors would like to express their sincere gratitude to the support.

REFERENCES
[1] Shvakumar, P.W. Tan, P.W., Newman Jr., J.C., A virtual crack-closure technique for calculating
stress intensity factors for cracked three dimensional bodies, Int. Journ. of Fracture, 36, R43-50,
1988.
[2] Irwin, G.R., Fracture, Handbook der Physik, 6, 551-590, 1958.
[3] Rybicki, E.F., Kanninen, M.F., A finite element calculations of stress intensity factors by a
modified crack closure integral, Engrng. Fracture Mech., 9, 931-938, 1977.
[4] Fawaz, S.A., Application of the virtual crack closuretechniqueto calculate stressintensity factors
for through cracks with an elliptical crack front, Engrng. Fracture Mech., 59, 327-342, 1998.
[5] Fawaz, S.A., Stress intensity factor solutions for part-elliptical through cracks, Engrng. Fracture
Mech., 63, 209-226, 1999.
[6] de Rijck, JJ.M., Fawaz, S.A., Stress intensity factors and crack interaction in adjacent holes,
Engrng. Fracture Mech., 68, 963-969, 2001.
[7] Abdel Wahab, M.M., De Roeck, G., A finite element solution for elliptical cracks using the ICCI
method, Engng. Fracture Mech., 53, 519-526, 1996.
[8] Broek, D., Elementary engineering fracture mechanics, Kluwer Academic Publishers, AD
Dordrecht, The Netherlands, 1986.
[9] Murakami, Y., Aoki, S., Hasebe, N., Itoh, Y., Miyata, H., Miyazaki, N. , Terada, H., Tohgo, K.,
Toya, M., Yuuki, R., Stress Intensity Factors Handbook, Pergamon Press, 1987.
[10] Raju, I.S., Newman Jr., J.C., Stress intensity factors for awide range of semi-elliptical surface
cracks in finite-thickness plates, Engrng. Fracture Mech., 11, 817-829, 1979.



