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ABSTRACT

This work deals with the so–called size estimates approach for detecting inclusions in electrical
conductors on the basis of boundary measurements of the current density and of the corresponding
voltage. Following the guidelines drawn up in Alessandrini et al. [1] and the experience made in
Alessandrini et al. [2], an extended numerical investigation has been performed in order to prove
the effectiveness of this approach. The sensitivity with respect to various relevant parameters is
also analyzed.
The work is supported by MIUR grant 2003082352 “Metodi non distruttivi per l’identificazione e la
diagnosi di materiali e strutture”.

1 INTRODUCTION
Several applications in the field of geophysical prospection, nondestructive tests and medical
imaging lead to the formulation of the following inverse problem: to determine inside an
electrical conductor Ω the possible presence of unknown defects, i.e. inclusions made of
different material, on the basis of one pair of current and potential boundary measurements.
In mathematical terms, if u denotes the electrostatic potential defined in the volume Ω of
the conductor, one wishes to recover D ⊂⊂ Ω in the Neumann problem

{
div ((AχΩ\D + ÃχD)∇u) = 0 in Ω,

A∇u · ν = ϕ on ∂Ω,
(1)

where A and Ã denote the conductivity tensors in Ω \D and in D respectively, ν is the unit
exterior normal to ∂Ω, on which a known current field ϕ is applied, and χE denotes the
characteristic function of the set E.
The inverse problem under consideration is severely ill–posed, therefore it is significant for
the applications to try to estimate, in a stable fashion, some relevant parameters of the
unknown defect, such as its volume.
In the paper of Alessandrini et al. [1], under some mild a priori assumptions on the inclusion
D, the following constructive upper and lower estimates of the volume of the inclusion D
have been obtained:
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where C1 and C2 are suitable constants depending on the data of the problem. These
estimates are based on the quantities

W =
∫

∂Ω

u ϕ and W0 =
∫

∂Ω

u0 ϕ (3)
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which represent the power required to maintain the boundary current ϕ when the inclusion
is present (being u the corresponding voltage) and when the inclusion is absent (being u0

the corresponding voltage), respectively.
It is attractive, from the practical point of view, the use of such estimates in order to
evaluate the volume |D| of the inclusion. Indeed, the approach provides that the points
(|W−W0

W0
|, |D|) are confined inside an angular sector delimited by two straight lines passing

through the origin. The slopes of these two lines are given by the constants C1, C2 appearing
in Eq. (2). By referring to Figure 1, we can estimate the confidence interval of |D| starting
from the measure of the power gap, once the constants C1 and C2 are known.

Figure 1: Goal of the size estimates approach.

The concrete evaluation of the constants C1, C2 appearing in (2) is a crucial point for real
life applications. However, also if the analytical procedure by which they are found is indeed
constructive, in practice, it leads to rather pessimistic estimates.
The present work tries to estimate these constants by numerical simulations, following an
approach already applied in Alessandrini et al. [2] for the case of elastic inclusions inside
elastic bodies.
The numerical experimentation is performend on the basis of a code which can perform
the numerical simulations of bi– and three–dimensional bodies made by material with uni-
form conductivity and subject to prescribed current density on the boundary. The data of
the simulations are assumed as simple as possible, but in a way to reproduce the typical
experimental settings which frequently occurs in testing of materials.

2 NUMERICAL SIMULATIONS
As already discussed before, we have to estimate the confidence interval of the volume |D|
of the defect on the basis of measures of the power gap obtained for all the possible defects.
In order to avoid an excessive growing of the numerical tests, we have to focus our attention
only on significant tests, aiming to emphasize the main aspects of the problem. In this sense,
we will follow the guidelines traced in analyzing the analogous mechanical problem, as faced
in Alessandrini et al. [2].
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We will perform tests which can indicate how much the position occupied by the defects, its
shape and relative conductivity, influence the power gap measure. For making this, we will
formulate in the following sections the assumptions adopted for the numerical simulations.

2.1 Working hypotheses
We consider both the materials, i.e. the conductor and the defect, as homogeneous materials
assuming uniform conductivity. Therefore, it is always possible to express this by a scalar
parameter f such that

A = f Ã. (4)

The influence of f on the power gap will be investigated with 0.1 ≤ f ≤ 10 and by main-
taining the other parameters representative of the inclusion constant.
From a theoretical point of view, the domain D of the defect have to be contained within
the domain Ω of the conductor, at a suitable distance d0 > 0 from the boundary. First of all,
we will check this fact, performing some numerical tests with different values of d0 starting
from d0 = 0.
All the numerical simulations use a finite element model of the problem. We will adopt for
regular domain the HC formulation for interpolating the electrostatic potential u. The main
feature of such an interpolation technique, which can be considered, in bidimensional prob-
lems, as a particular case of the Bézier interpolation, consists of its capability in reproducing
fields of C1 smoothness with a computational cost equivalent to a C0 interpolation. Further
details can be found in Aristodemo [3], where the technique has been proposed. For more
complex domain, triangular (2D) and tetrahedron (3D) finite elements will be adopted.
Note finally that we will refer to cases of small inclusions, that is |Ω|/|D| ≤ 6%.

2.2 Generation of the defects
In order to investigate how the position occupied by the defect influences the power gap,
it is more convenient to refer to defects of very regular shape, i.e. squares in 2D or cubes
in 3D. In this way, it is also simple to check the sensitivity of the power gap when defects
are in the neighborhood of the boundary and therefore to define a minimal distance d0, and
then a subdomain Ωd0 , for which the disturbance of the boundary conditions is negligible.
Successively, within Ωd0 defects of several shape are generated on the basis of the finite
element mesh. If one element is considered as the defect of minimum dimension, the possible
combinations of this allow to generate very different shapes. However, aiming to generating
all the possible combinations, the computational costs could become excessively high. A
good choice should lie in using not much fine mesh and a fixed way of generating the shapes,
for instance elements with at least a common face. For instance, in analyzing a square plate
discretized with a 13×13 mesh we have to generate more than 7000 possible combinations
of elements.
However, the number of possible combinations in more complex three–dimensional problems
tends to increase exponentially. A way for reducing a priori these combinations is to make
some hypothesis on the type of shape of the inclusion. In this sense, the following shape
parameters, which measure the “scattering” of the inclusion in two–dimensional problems,
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could be significant:

normalized isoperimetric deficit =
P 2 − 4π|D|

4π|D| ,

spread =
λ1 + λ2

|D|2
,

elongation =
λ2 − λ1

λ1 + λ2
,

where P is the perimeter of the inclusion, and λ1, λ2, 0 < λ1 < λ2 are the eigenvalues of
the inertia matrix evaluated with respect to the centroid of the inclusion.

3 CONCLUDING REMARKS
In Alessandrini et al. [1] it was shown how upper and lower bounds of the measure (volume
or area) of an unknown defect inside a conductor can be obtained in terms of the power
gap. Practical applications requires the evaluation of the constants appearing in these size
estimates. On the other hand the complexity of actual problem cut off the use of analytical
procedure. Numerical simulations, guided by theoretical results, give a valuable contribution
for estimating upper and lower bounds usable in actual applications.
The tests are chosen in order to simulate actual problem. A study on the influence on the
upper and lower bound of the significant parameters of the inclusion, such as the position,
the shape and the stiffness is useful in order to limit the number of tests. The influence of
the boundary conditions are also analyzed to furnish guidelines in experimental test.
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