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ABSTRACT

A coupled continuum damage-discrete crack propagation strategy to simulate strength degradation and fracture in
concrete structures is presented. At fixed crack length, mesh-independent results are obtained through an integral non-
local regularization of the damage model. For increasing loading conditions, as soon as a critical damage threshold is
attained in the process zone, cohesive cracks are introduced to allow for a discontinuous displacement field. Within
the class of cohesive laws that feature the same dissipation properties of the continuum damage model, constitutive
parameters are calibrated through an energy equivalence. Results concerning the wedge splitting test are shown to
demonstrate the efficiency of the proposed procedure.

1 INTRODUCTION
The response of concrete structures to increasing loadings is characterized in the early stage by the spreading
of micro-cracks in localized regions (like, e.g., ahead of a pre-existing notch); these micro-cracks eventually
coalesce to create only a few macro-cracks.
To simulate numerically this complex behavior, a continuum damage approach proves efficient in the first
stage. But, for increasing levels of damage, the width of the band where damage still continues to grow tends
to become narrower and narrower. To accurately resolve the process zone, the characteristic dimension of
finite elements needs to be a fraction of the bandwidth. If it is chosen small enough from the beginning of the
analysis, computational costs become excessive for real-life structures like, e.g., concrete dams. Otherwise,
the mesh can be adaptively refined during the analysis so as to simulate the process zone response with
the required degree of accuracy; in this case the computational burden is mainly due to the continuous
projection of current results from the old meshes to the new ones.
In this work an alternative approach is followed. From a simplified bifurcation analysis of a one-dimensional
elastic damage continuum subject to a uniform stress and strain distribution, an estimate of the process zone
width as a function of damage is obtained [1]. At fixed discretization, as soon as the mesh is considered too
coarse to resolve the band on the basis of the above estimate, a cohesive crack is allowed for through the
partition of unity concept [2, 3, 4]. As shown in [4], under mixed mode loading conditions this methodology
allows to simulate crack paths completely independent of the mesh layout.
Concerning the constitutive modeling of concrete, an integral non-local regularization is adopted to restore
the well-posedeness of the set of equations governing the problem [5, 6]. This allows to fix the fracture
energy, that is the energy to be dissipated in order to completely annihilate the interaction between the two
faces of the crack. The cohesive model can thus be calibrated by allowing the crack to dissipate only the
fraction of the concrete toughness not already dissipated by the continuum prior to crack insertion.
This procedure is numerically tested with an analysis of the failure mechanism in the wedge splitting test
[7], where a pre-existing edge notch is subject to mode I loading. It is shown that, when the displacement
discontinuity is plugged into the simulation, a realistic damage pattern around the propagating macro-crack
is obtained.

2 GOVERNING RELATIONS
Let us consider a two-dimensional (2D) solidΩ, with boundaryΓ = Γu ∪ Γt (Fig. 1). Tractions̄t are
prescribed onΓt, whereas displacements̄u are assigned onΓu. A displacement discontinuity locusΓd can
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Figure 1: 2D solid. Geometry and notation.

nucleate and propagate insideΩ.
Under the assuption of linearized kinematics, equilibrium and compatibility relations forΩ are:

CTσ + b̄ =0 in Ω\Γd (1)

Nσ =t̄ onΓt (2)

Mσ = −t+ onΓ+
d , Mσ =t− onΓ−d , t ≡ t− = −t+ (3)

ε =Cu in Ω\Γd (4)

u =ū onΓu (5)

[u] =u
∣∣
Γ+

d

− u
∣∣
Γ−d

(6)

where:u is the displacement vector;[u] is the displacement discontinuity vector alongΓd; ε andσ are the
strain and stress vectors;t are the tractions acting upon the boundary ofΩ (Γd included);C is the differential
compatibility operator;N andM are matrices gathering the components of unit vectorsn andm (see Fig.
1); T stands for transpose;Γ+

d andΓ−d denote the two sides ofΓd, according to Fig. 1.
An isotropic elastic damage constitutive law is adopted forΩ\Γd. The local format of this law reads:

σ = (1−D)E : ε (7)

f = 2µ2e : e− 9K2a ε2
v + 3Kb ln

n
2

(
c

1−D

)
εv − k lnn

(
c

1−D

)
≤ 0 (8)

Ḋ ≥ 0, fḊ = 0 (9)

where:E is the matrix of elastic moduli of the virgin material;D is the isotropic damage variable;µ and
K are the shear and bulk elastic moduli;f is the damage activation function;εv is the volumetric strain,
wherease is the deviator ofε; a, b, c, k andn are model parameters, to be adjusted in order to match the

2



concrete behavior in the softening regime. The continuum model (7)-(9) locally dissipates a specific energy:

gf =
1
2

σ2
0

E

{
1 +

2nc

nn−1
G [n, ln c]

}
(10)

Here: E is the Young’s modulus of the virgin material;σ0 is the peak strength under uniaxial tensile
loadings;G[n, ln c] ≡ ∫∞

ln c
zn−1 exp(−z) dz is the incomplete gamma function.

To restore the well-posedeness of the problem (1)-(9) in the softening regime (whenḊ > 0) and to achieve
mesh-independent results an integral non-local regularization of the strain invariants is adopted [5, 6].
As for Γd, the cohesive lawt = t([u]) is formulated so as to feature a softening envelope similar to that
of the damage model for the bulk [8]. Model parameters are calibrated in order to get the same energy
dissipation in the following two cases: (a) a continuum analysis allowing for bulk damage only, without
crack growth; (b) an enhanced analysis with bulk damage coupled to crack propagation as soon as a critical
damage threshold is attained in the process zone (for details see [8]). It turns out that, under mode I loadings:

tn ([u]n) =c exp


−


b +

√
b2 + 4

(
1
3 − a

)
k

2k
E

(
εc +

[u]n
Le

)


2
n

 E

(
εc +

[u]n
Le

)

+
1
2
E (1−Dc) ε2

c

[u]n
Le

exp
[
− [u]n

Le

]
(11)

where:tn and[u]n are, respectively, the opening traction and displacement discontinuity (see Fig. 1);Dc is
the mentioned critical damage threshold andεc the relevant deformation inΩ; Le is the width of the process
zone corresponding toDc [1].

3 FINITE ELEMENT FORMULATION
Within the frame of the extended finite element method, the assumed discretized displacement field is:

uh (x) =
∑

i∈I

φi (x) u0
i +

∑

j∈J

H (x)φj (x)uE
j (12)

where:x is the position vector in the 2D space; the node setI covers the whole domainΩ, while the set
J gathers only those nodes whose supportωj is even partially cut byΓd; φi is the piecewise linear nodal
shape function;u0

i are the basic degrees of freedom (DOFs) anduE
j are the additional, or extended ones;

H (x) is the generalized Heaviside step-function, defined according to:

H (x) =
{

+1 if (x − x∗)T
m > 0

−1 if (x − x∗)T
m < 0

(13)

x∗ being the closest point projection ofx ontoΓd.
To avoid locking of the discrete formulation when a collapse mechanism is developed in the structure after
complete crack growth, all the nodes belonging to the tip element are included in the setJ .
Now, lete1, e2, e3 be the vertex nodes of a generic triangular elemente, whose domain isΩe. If all the three
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nodes belong to setJ , the in-plane displacement fielduh (x) reads:

uh (x) =

{
uh

x (x)

uh
y (x)

}
=

[
Φe

... HΦe

]




u0
e
· · ·
uE

e



 x ∈ Ωe (14)

whereu0
e anduE

e respectively gather all the basic and extended nodal DOFs relevant to elemente andΦe

is the standard matrix of interpolation functions, i.e.:

Φe =
[
φe1 0 φe2 0 φe3 0
0 φe1 0 φe2 0 φe3

]
(15)

The strain field is thus given by:

εh (x) =





εh
x (x)

εh
y (x)

2εh
xy (x)





=
[
Be

... HBe

]




u0
e
· · ·
uE

e



 x ∈ Ωe\Γde (16)

Γde being the portion ofΓd inside elemente and:

Be =

[
φe1,x 0 φe2,x 0 φe3,x 0

0 φe1,y 0 φe2,y 0 φe3,y

φe1,y φe1,x φe2,y φe2,x φe3,y φe3,x

]
(17)

Here a comma means derivative.
The discretized displacement discontinuity alongΓde is:

[u]h (x) = uh

∣∣∣∣
Γ+

de

− uh

∣∣∣∣
Γ−de

=
∑

j∈J

2φj (x) uE
j =

[
0

... 2Φe

]




u0
e
· · ·
uE

e



 x ∈ Γde (18)

During the analysis, at fixed crack length the damageDh at Gauss points is continuously monitored; in
all the elements whereDh exceeds the critical threshold, a crack segment should be introduced. However,
according to the physics of the problem explained in the introduction, only one crack is allowed to propagate
inside each damage band.
To propagateΓd, the damage pattern in the process zone is recovered and best-fitted with a complete fourth-
order polynomial. Crack growth is then chosen to be perpendicular to the direction of maximum curvature
of the interpolating polynomial at the crack tip.

4 NUMERICAL SIMULATION OF THE WEDGE-SPLITTING TEST
The wedge splitting test configuration is shown in Fig. 2 (specimen thickness is 97 mm). Experimentally,
a wedge is pushed from the left into the side notch so that two opposite forces (P ) act at the mouth of
the initial crack and cause a mode I propagation. The ligament, where the process zone developes, is thus
subject to bending.
To simulate damage evolution in the bulk, the following values of model parameters have been adopted:
E = 25200 MPa; ν = 0.2; a = 0.2; b = 0.1265 MPa; c = 10000; k = 6.838 · 10−7 MPa2; n = 12.
The internal length scale for the non-local regularization has been assumedlc = 17.5 mm. These material
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Figure 2: Wedge splitting test. Geometry and loading conditions.

Figure 3: Wedge splitting test. Load vsCMOD response.

parameters correspond to a concrete tensile strengthσM = 3.3 MPa and to a mode I fracture toughness
Gf ≈ 100 J/m2.
In the analysis, crack propagation is simulated underCMOD (crack mouth opening displacement) control.
The numericalP vs CMOD response is compared in Fig. 3 to the available experimental data [7]. In view
of the rather rough calibration of the model, the softening branch can be considered to reproduce the actual
response with an encouraging level of accuracy. The blue arrow in the figure points towards the onset of
crack growth: the initial post peak strength reduction is thus caused by bulk damage only.
In Fig. 4 level sets of damageD are reported in the deformed configuration, with displacements amplified
100 times to appraise crack growth. It can be seen that, after an initial transient phase, damage evolves
maintaining an almost constant bandwidth in the process zone ahead of the current crack tip.
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Figure 4: Wedge splitting test. Simulated damage evolution and crack growth.
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