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ABSTRACT 

When fracture happens, in several problems of engineering the selection of the constitutive relation has an 
essential role beyond the equations of motion and the kinematical equation. A wide range of studies 
published in this topic use various types of constitutive models being more or less appropriate 
approximations to the mechanical problem under consideration. In searching for a generalized approach 
our paper deals with the theory of constitutive modeling of solid materials. The studies presented int he 
following are based on the almos obvious concept that the set of basic equations descibing solid bodies 
should possess mathemetical consistency. In this work two basic reqiurements are considered. The one is 
the existence and regular propagation of waves, while the other is a so-called generic behavior at material 
instability. The first condition is of dynamic nature appearing at rapid, high rate loading. The second one is 
closely related to fracture: we assume that the onset of material instability is a starting point of the process, 
which leads to fracture. The methods we use are based on variational principles and the theory of 
dynamical systems. For this reason we should define an infinite dimensional dynamical system, which is 
determined by the set of fundamental equations of the solid body. Such equations are used to define 
differential opeartors acting on the basic field variables like displacement, velocity, stress and strain, which 
satisfy appropriate boundary conditions. Then we concentrate on a selected state S0 of the material, which 
satisfies all the basic equations and additionally all the bondary conditions. Now state S0 of the material is 
called stable, if the solution of the dynamical system satisfies the conditions of the Liapunov stability. By 
using the methods of the theory of dynamical systems we will study how material instability happens and 
we judge whether it is a generic type of loss of stability or not. 

 
1  INTRODUCTION 

Fracture phenomena are initiated by some kind of loss of stability (Drucker [1], Rice [2], Rice et 
al. [3], [4]) of the material. When a mathematical description is needet to do an apriori 
calculation we should form a set of basic equations (Lubliner [5]) to perform numerical analysis 
(De Borst et al. [6], Zbib, Aifantis [7]). 
     The essential role is of the constitutive equations describing material properties. There are 
several ideas to build such equations. In this paper we follow Mindlin's theory and require 
regular wave dynamical properties.  
 

2  THE CONSTITUTIVE EQUATON 
For determinig stress σ  Mindlin's idea was to use variational identity 
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where ε ,u  are displacement and strain. Additionally we require that the system of fundamental 
equations built by using the constitutive equation should be available to determine an 
acceleration wave with finite speed of propagation. Assume that the constitutive equation 
contains stress, strain and the first derivatives of them. By using internal variable ( )εη  we have 

( )ησε , , =u . Then Mindlin's variational form leads to the Lagrange derivative of u , which 

contains the second derivative 
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There exists an acceleration wave with finite wave speed, if  
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where B  is a positive function and notation  
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is used. Then  
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When the internal variable is the stress, the constitutive equation is  
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or in general form  
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3  DYNAMICAL SYSTEMS 
While stability is considered to be a local property, we may add infinitesimal perturbations to 
the basic variables and use small deformation theory for the set of basic equations written for 
the field of perturbations. For the sake of simplicity the study is restricted to uniaxial problems, 
but a quite similar approach is possible even for a general three-axial case. 
     We may denote as (small) perturbation variables of state  by 0S σε ,,v  for the fields of 
velocity, strain and the symmetric stress. Then the basic equations are 
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where ρ  is mass density as usual.  
     To the set of perturbation field equations we should add homogeneous boundary conditions 
and the question of stability means an investigation of the behavior of the boundary value 
problem formed by the set of equations eqns (1), (2) and (3).  
     For performing a stability analysis let us define a dynamical system of infinite dimension 
(Temam [8]). For this reason we assume that equations eqns (1), (2) and (3) can be transformed 
into the perturbation velocity field v  satisfying homogeneous boundary conditions. Then  
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is obtained. Assume that 
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Now an infinite dimensional dynamical system  
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is defined by eqn (5), where (differential) operators  acting in field v  are defined. 
Then by introducing new variables 
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a formal mathematical transformation may result a first order abstract dynamical system 
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By applying Lyapunov's indirect method (Troger, Steindl [9]) we should derive the 
characteristical equation of the system of eqns (6), (7)  
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After proper rearrangements eqn (8) has the form  
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and the stability condition is  
 

• 0Re <iλ , i=1... for all iλ  satisfying eqn (9). 
 
The stability boundary (a loss of stability may be possible) is 

• there exists a critical crλ , for which 0Re =crλ , while 0Re <iλ , for all cri λλ ≠  
satisfying eqn (9). 

 
Two possible generic ways of loss of stability are called  
 

• the static bifurcation (SB), when 
0Re =crλ ;                                                                                                                                  (10) 
• the dynamic bifurcation (DB), when  
0Re ≠crλ .                                                                                                                                  (11) 

 
Then from eqns (9) and (10) the (necessary) condition of the static bifurcation type of material 
instability is  
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while eqns (9) and (11) imply the (necessary) condition for the dynamic bifurcation 
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Note that conditions eqns (12) and (13) are partial differential equations with homogeneous 
boundary conditions. Having done all the necessary substitutions and rearrangements the 
condition of eqn (12) implies  
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and eqn (13) is satisfied automatically (and trivially) 
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From eqn (15) we see that dynamic bifurcation or the flutter case (Bigoni, Willis [10]) does not 
appear at this material.  
     Remark that the same bifurcation conditions (eqns (12) and (13)) can be obtained for the 
three axial case. Unfortunately, in such general case the implied boundary value problem is a 
very complicated one and no analytic method can be found to evaluate it. Then we could do a 
more or less restrictive weak formulation or search for some numerical method.  
 

4  SUMMARY 
When Mindlin's idea and the basic wave dynamical requirements are applied a general form is 
obtained for the constitutive equation. To use such formulation in material instability cases we 

should add condition ( )
.00
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for calculations in various localization type instability phenomena (like micro or macro scale 
shear band formulation for example).  
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