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ABSTRACT

The purpose of this work is the formulation of models for the dynamics of continua with microstruc-
ture and material inhomogeneity. In particular, attention is focused on the balance relations and
configurational fields for such continua obtained via invariance. Their formulation here is based on
the Euclidean frame-indifference of the total energy balance together with the invariance of this bal-
ance with respect to changes of reference configuration. On this basis, one obtains additional balance
relations for the microstructural fields as well as the dependence of the configurational fields on these.
Combination of these results then facilitates the formulation of additional field relations pertaining to
the case of a continuum with heterogeneous microstructure. In particular, this approach is applied in
the current work to the case that the microstructure takes the form of microcracks or microvoids in
the material whose effect on the material behaviour is isotropic and can be idealized as a continuum
damage field.

1 INTRODUCTION

The behaviour of many materials of engineering interest (e.g., metals, alloys, granular materi-
als, composites, liquid crystals, polycrystals) is often influenced by an existing or emergent mi-
crostructure (e.g., phases in multiphase materials, phase transitions, voids, microcracks, dislocation
substructures, texture). In general, the components of such a microstructure have different material
properties, resulting in a macroscopic material behaviour which is materially inhomogeneous. At-
tempts to incorporate this fact into the continuum modeling of such materials have lead to a number
of approaches to and viewpoints on the issue, depending in par t on the nature of the microstructure
and corresponding inhomogeneity in question (e.g., Noll [1]; Capriz [2]; Maugin [3]; Gurtin [4]).
Beyond heterogeneous material properties, processes associated with the microstructure which are
represented in the model by continuum fields (e.g., damage and order parameter fields, director field)
also contribute to configurational fields and processes. Such fields represent additional continuum
degrees-of-freedom for which corresponding field relations must be formulated. Contigent on the
premise that the corresponding processes contribute to energy flux and energy supply in the material,
field relations for such degrees-of-freedom result from the Euclidean frame-indifference of the total
rate-of-work (e.g., Capriz [2]), or more generally from that of the total energy balance (e.g., Capriz
and Virga [5]; Svendsen [6], [7]). Once thermodynamically-consistent field relations and reduced
constitutive relations have been obtained, one is in a position to formulate and solve initial-boundary-
value problems. In the context of elastic material behaviour and thermodynamic equilibrium, such
initial-boundary-value problems are often formulated variationally (e.g., for elastic phase transitions:
Ball and James [8]; for elastic liquid crystals: Virga [9]; for configurational fields in elastic materials:
Podio-Guidugli [10]; see also Šilhavý [11], Chs. 13-21). Recently, it has been shown (e.g., Ortiz and
Repetto [12]; Miehe [13]; Carstensen et al. [14]) that direct variational methods for elastic materials
can be carried over to the inelastic case with the help of a so-called incremental variational formula-
tion. The purpose of this short work is the application of this incremental approach to the variational
formulation of spatial balance relations as well as of configurational field and balance relations for
a material inhomogeneous inelastic continuum containing a singular surface and isotropic damage.
The formulation pursued here is general enough so that the damage may be of either brittle or duc-
tile nature. For simplicity, the formulation in this work is restricted to isothermal and quasi-static
conditions.
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2 BASIC FORMULATION

Let E represent 3-dimensional Euclidean point space with translation vector space V , B ⊂ E
an arbitrary reference configuration of some material body containing a stationary coherent singular
surface S, and r ∈B the location of some material point in B . The time-dependent deformation or
motion of the material body with respect to B and E in some time interval I ⊂ R

+ takes the usual
form xt = ξ(t, r) ∈E for all t ∈ I . Since S is coherent, ξ is continuous and piecewise continuously
differentiable, implying that the jump [[ξ ]] : = ξ+ − ξ− of ξ at S vanishes, i.e., [[ξ]] = 0 holds.
To account for the effects of non-local isotropic damage on the material behaviour, the standard
continuum degrees of freedom as represented by ξ are complemented here by an additional time-
dependent continuum field d = ω(t, r) on B taking values in the closed unit interval [0, 1] ⊂ R

+.
Basic kinematic quantities of interest include the material velocity ξ̇(t, r) ∈V and the deformation
gradient F (t, r) : = ∇ξ(t, r). Since S is stationary and ξ is continuous and piecewise continuously
differentiable, the Hadamard lemma (e.g., [11], Prop. 2.1.6) implies that [[ ξ̇ ]] = 0 and that [[F ]] is
rank-one convex. For simplicity, attention is restricted here to the case that S is coherent with respect
to ω as well, i.e., [[ω ]] = 0. The Hadamard lemma then yields [[ω̇ ]] = 0 and [[∇ω ]] rank-one convex.

Assuming now that processes associated with the evolution of x : = (ξ , ω) result in mechanical
work being done in the system, the approach to the formulation of balance relations for materials
with microstructure being pursued here is based on the total energy balance

E =
˙∫

P

ψ +

∫
P

δ −

∫
∂P

f · ẋ −

∫
P

s · ẋ = 0 (1)

for any part P ⊂ B (e.g., [15]). Note that volume dv and surface da measures are left out of
the corresponding integral notations in this work for simplicity. Here, ψ represents the free energy
density, δ the dissipation-rate density, F the generalized momentum flux density of normal to ∂B ,
and s the generalized momentum supply-rate density. Assuming in addition that the material with
microstructure in question is materially inhomogeneous and behaves viscoelastically, the invariance
of the total energy balance with respect to Euclidean observer (e.g., [5]; [11], Ch. 6; [6]; [7]) together
combined with the exploitation of the dissipation principle (e.g., [11], Ch. 9; [6]; [7]) results in the
field relations

0 = div(∂
∇ẋrI ) − ∂ẋrI + s on B \ S ,

0 = [[∂
∇ẋrI ]]n on S ,

(2)

(e.g., [15]) and constitutive restriction F = ∂
∇ẋrI in terms of the rate potential r

I
: = ψ̇ + χ

I
. This

potential is determined by the reduced forms ψ = ψ(x,∇x, r) and χ
I

= χ
I
(x,∇x, ẋ,∇ẋ, r) at any

r ∈B (for notational simplicity, we neglect the dependence of the constitutive relations on r in the
notation until it becomes relevant). Note that material frame-indifference leads to a further reduction
in the forms of ψ and χ

I
not accounted for here. The dissipation potential determines the residual

constitutive form δ = ∂ẋ
χ

I
· ẋ + ∂

∇ẋ
χ

I
· ∇ẋ ≥ χ

I
of the dissipation-rate density δ , with equality

holding in the rate-independent special case. Note that χ
I

is convex and minimal in its rate (i.e.,
non-equilibrium) arguments ẋ, ∇ξ̇ and ∇ẋ, as well as non-negative.

3 RATE-BASED AND INCREMENTAL FORMULATIONS

For concreteness, the variational formulation to follow presumes a loading enviroment for the
material under consideration of the displacement-traction type generalized to the current setting,
i.e., applying to x. Note that other such environments, e.g., unilateral or bilateral contact (e.g., [11],
§13.3), can also be generalized to the current context and approach take here. As usual, the boundary
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∂B of B is then divided into generalized displacement ∂B x and generalized traction ∂Bf parts such
that ∂B = ∂Bx ∪ ∂Bf and ∅ = ∂Bx ∩ ∂Bf hold. By definition, f is compatible with f = ∂

∇ẋrI n

on ∂Bf , and vanishes on ∂Bx . Likewise, x is prescribed on ∂Bx . On this basis, consider the class of
loading environments characterized by the non-conservative form

−

∫
B

s · ẋ −

∫
∂B

f · ẋ =
˙∫

B

ws +

∫
B

(∂ẋ
χ

s · ẋ + ∂∇ẋ
χ

s · ∇ẋ) +
˙∫

∂Bf

w
f
+

∫
∂Bf

∂ẋ
χ

f · ẋ (3)

for the generalized power of external forces or rate of external work, holding for all kinematically-
admissible x. Here, ws = ws (x,∇x) and wf = wf (x) represent direct generalizations of the bulk
and surface potential energy densities for a conservative loading environment (e.g., [11], §13.3) to
the case of microstructure, while χs = χ

s (x,∇x, ẋ,∇ẋ) and χ
f

= χ
f
(x, ẋ) represent correspond-

ing dissipation potentials accounting for the effects of friction and other non-conservative loading
processes in the bulk and on the boundary, respectively. In terms of the rate potentials r s : = ẇs +χs

and rf : = ẇ
f
+ χ

f
associated with the supply-rate and boundary-flux contributions, respectively, to

the rate of external work, where δqf := ∂qf −div(∂
∇qf) represents the variational derivative (e.g.,

[16], Supplement 2.4C; [11], §13.3), (3) together with (2) yields

0 = δẋ r on B \ S ,

0 = (∂
∇ẋr)n + ∂ẋrf on ∂Bf ,

0 = [[∂
∇ẋr]]n on S ,

(4)

where r : = r
I

+ rs . In particular, (4)1 implies that r is a null Lagrangian in the rates ẋ (e.g., [11],
§13.6). As it turns out, these last relations represent the (rate) stationarity conditions of the (rate)
functional

R(x, ẋ) :=

∫
B

r(x,∇x, ẋ,∇ẋ) +

∫
∂Bf

rf (x, ẋ) (5)

with respect to B . This is a functional on the tangent bundle TX of the (infinite-dimensional)
manifold X of all admissible states x. Note that this functional is bounded from above; indeed, in
the context of (3), the energy balance (1) and result δ ≥ χ

I
imply 0 ≥ R, in particular via the

convexity of r and rf in their rate arguments. Again, equality holds in the rate-independent case.
The vanishing of the variation of R with respect to admissible variations δ ẋ in the rates holding x

fixed implies (4). In the tangent-bundle context, this represents the so-called fibre derivative of R
on TxX (e.g., [16], Supplement 8.1B). In addition, one can show that the stability of rate stationary
points of R is determined by the Hessian matrix of χ : = χ

I
+ χ

s with respect to its rates together
with ∂ẋ(∂ẋ

χ
f ). Since χ and χf are by definition convex in the rates, this matrix is positive-definite,

R is minimal in the rates, and states satisfying (4) are stable in the rates.

Consider next the incremental form of the above rate-based variational formulation. Time-
integration of R over the time interval [tn, tn+1] ⊂ I , rearrangement and forward-Euler approxi-
mation of the time-averages over [tn, tn+1] yields the functional

In+1,n(xn+1) =

∫
B

ϕn+1,n(xn+1,∇xn+1) +

∫
∂Bf

ϕf n+1,n(xn+1) , (6)

where

ϕn+1,n(xn+1,∇xn+1) = ψ(xn+1,∇xn+1) + ws (xn+1,∇xn+1)

+ tn+1,n
χ(xn,∇xn, xn+1,n/tn+1,n,∇xn+1,n/tn+1,n) ,

ϕf n+1,n(xn+1) = wf (xn+1) + ∆t χf (xn, xn+1,n/tn+1,n) ,

(7)
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represent the volume and surface density, respectively, of I n+1,n(xn+1), tn+1,n : = tn+1 − tn,
xn+1,n := xn+1 − xn and likewise for ∇x. Requiring the variation of In+1,n(xn+1) with respect to
xn+1 to vanish for all admissible δxn+1 results in the incremental form

0 = δx
n+1

ϕn+1,n on B \ S ,

0 = (∂
∇x

n+1
ϕn+1,n)n + ∂x

n+1
ϕf n+1,n on ∂Bf ,

0 = [[∂
∇x

n+1
ϕn+1,n]]n on S ,

(8)

of the system (4). Analogous to r being a null Lagrangian in ẋ on the basis of (4)1, note that (8)1
implies that ϕn+1,n is a null Lagrangian in xn+1 (e.g., [11], §13.6). Like for the canonical free
energy, one can show that In+1,n(xn+1) is a (monotonically) non-increasing function (e.g., [15]),
and so a possible Liapunov function for the processes of interest (e.g., [11], Ch. 15).

4 VARIATIONAL FORMULATION OF CONFIGURATIONAL FIELDS AND RELATIONS

The results of the variational formulation from the last section were obtained by varying the fields
holding the reference configuration B of the material under consideration fixed. As is well-known
(e.g., [11], §14.5; [10]), variations of the reference configuration at fixed fields yield in the elastic
context variational forms of configurational fields and balance relations. The purpose of this section
is to derive these in the current setting with respect to the incremental functional I n+1,n(xn+1) from
(6). To do this, we reintroduce the dependence of the constitutive relations on r ∈B and consider a
smooth variation of B as represented by a one-parameter family λ τ : B → Bτ | r 7→ rτ = λτ (r)
of transformations of B which leave ∂B fixed. By definition, r0 = λ0(r) = r and ∇λ0 = 1. This
one-parameter family induces the corresponding parameter ized form 1

Ī (τ) : =

∫
λ

τ
[B ]

ϕ(xτ ,∇xτ , rτ ) +

∫
∂Bf

ϕf (x, r) (9)

of In+1,n, where xτ : = x ◦λ−1
τ . Pulling (9) back toB then yields

Ī (τ) =

∫
B

ϕ(x,∇xτ
◦λτ ,λτ (r)) det(∇λτ ) +

∫
∂Bf

ϕf (x, r) , (10)

and so the result

∂τ Ī |τ=0 =

∫
B

∂∇xϕ · ∂τ (∇xτ
◦λτ )|τ=0 + ∂rϕ · υ + ϕ 1 · ∇υ (11)

for its variation with respect to τ , where υ : = (∂τλτ )|τ=0. Since λτ leaves the boundary ∂B
of B fixed by definition, note that υ vanishes on ∂B . Now, from the result 0 = ∂ τ (∇x) =
∂τ (∇xτ

◦λτ ) (∇λτ ) + (∇xτ
◦λτ ) ∂τ (∇λτ ), we obtain ∂τ (∇xτ

◦λτ )|τ=0 = −(∇x) (∇υ)|τ=0.
Substituting this into (11), it reduces to

∂τ Ī |τ=0 =

∫
B

∂rϕ · υ + {ϕ1− (∇x)T(∂∇xϕ)} · ∇υ

=

∫
B

{∂rϕ − div[ϕ1− (∇x)T(∂∇xϕ)]} · υ

−

∫
S

[[ϕ1 − (∇x)T(∂∇xϕ)]]n · υ ,

(12)

1Dropping the e and s subscripts for the moment.
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again since υ vanishes on ∂B . Consequently, the requirement that I n+1,n be independent of (com-
patible) change of reference configuration, i.e., that ∂ τ Īn+1,n|τ=0 vanish for all variations υ leaving
∂B fixed, then implies

0 = divEn+1,n − ∂rϕn+1,n on B \ S ,

0 = [[En+1,n]]n on S .
(13)

Here,

En+1,n : = ϕn+1,n 1− (∇xn+1)
T(∂

∇x
n+1

ϕn+1,n)

= ϕn+1,n 1− (∇ξn+1)
T(∂∇ξ

n+1
ϕn+1,n) − (∇ωn+1) ⊗ (∂∇ω

n+1
ϕn+1,n)

(14)
represents the generalized total Eshelby or configurational stress tensor in the context of the incre-
mental formulation.

The generalized form (14) for the configurational stress is formally analogous to that for the
elastic case (e.g., in the standard context: [3]; in the microstructural context: [7]) in which E is
determined by the free energy density ψ . Indeed, the role of ψ in the elastic case is played in the
current inelastic context byϕn+1,n. Finally, note that, if the material behaviour is homogeneous, then
ϕn+1,n is translationally invariant, i.e., ϕn+1,n(xn+1,∇xn+1, r + a) = ϕn+1,n(xn+1,∇xn+1, r)
holds for all a ∈V . In this case, ∂rϕn+1,n vanishes, and (13)1 reduces to 0 = div En+1,n. In this
case, the total Eshelby stress tensor is analogous to a null divergence (e.g., [17]; [11], §13.6).
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