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ABSTRACT
The contact between an atomic force microscope tip and a sample surface can form an ideal single
asperity of nanometer dimensions, where the interaction forces can be measured with sub-nanoNewton
force resolution.  Studies of contact, adhesion and friction for these nano-asperities have been carried
out for a variety of tips and single crystal sample surfaces, both in ambient conditions and ultrahigh
vacuum. The major result is the observation of proportionality between friction and true contact area for
a variety of systems, and impressive agreement with continuum mechanics models even at the
nanometer scale, although several features unique to the nanoscale are also observed.  The relevant
continuum models can in fact be understood in the framework of a scale-dependent fracture mechanics
model. We will discuss how adhesive models of contact, which can be derived from fracture mechanics
approaches, are used to determine what we propose are the fundamental tribological parameters of
nanoscale interfaces: the interfacial shear strength, and the work of adhesion.

1  INTRODUCTION
As devices shrink in size, the increased surface-to-volume ratio of the components ensures that
interfacial forces such as friction and adhesion play dominant roles. This fact is painfully
appreciated by the designers of microelectromechanical systems (MEMS) who often observe
catastrophic failure of MEMS due to adhesion, friction and wear. Understanding these interfacial
forces may allow such problems to be remedied, and furthermore, the relative strength of these
forces could potentially be exploited for specific micro- and nano-scale device applications.

There is currently no fundamental theory to explain or predict friction. Macroscopically, the
friction force (Ff) is usually linearly proportional to the normal force or load (L):

Ff = m ⋅ L (1)

which defines the friction coefficient µ. Eqn. (1) is referred to as Amontons' Law. Macroscopic
studies are complicated by the effects of roughness, wear, third-bodies and tribochemistry.

The atomic force microscope (AFM) is an important tool with which to study contact and
friction in a fundamental way [1]. A tip, with typically 10-100 nm radius of curvature, is attached
to a compliant cantilever spring. At low applied loads, the tip can form a nanometer-scale single
contact point (an “asperity”) with a variety of sample surfaces, thus providing a well-defined
interface. The cantilever deflections are recorded using, most commonly, a reflected optical beam.
These deflections are converted to forces by using Hooke’s Law. In principle, the normal and
lateral forces can be measured with sub-nanoNewton precision, with sub-Ångstrom displacement
precision. This tip is rastered over the surface using piezoelectric scanning tubes.

2  EXPERIMENT
The experiments described here were conducted using either an ultrahigh vacuum atomic force
microscope which is described elsewhere [3], or a Digital Instruments Multimode AFM using a
Nanoscope IV controller. Experiments were performed at room temperature. Microfabricated
cantilevers from commercial vendors were used. Scanning electron microscopy measurements of



cantilever dimensions were combined with
continuum elasticity theory calculations to
estimate the normal force spring constants.
Lateral forces were calibrated with respect to
the normal forces using the “wedge calibration
technique” [2]. The tip geometry was
experimentally determined using “inverse
imaging” [4]. Unless otherwise noted, the tip
was determined to be paraboloidal.

Two sets of interfaces are discussed here:
(1) A platinum-coated tip and a muscovite

mica(0001) sample in UHV [5,6]. The 100 nm
Pt coating was deposited by sputtering onto a
plasma-cleaned silicon nitride cantilever.
Muscovite mica was cleaved inside the vacuum
chamber prior to the experiment, producing
large step-free regions.

(2) A silicon nitride tip (SiN) and a
diamond-like carbon (DLC) thin film sample. DLC films were deposited on silicon wafers using
the non-line-of sight plasma source ion deposition process [7].

3  RESULTS

3.1  Atomic-lattice stick-slip
Frequently, when an AFM tip is placed in contact with a crystalline sample and scanned across it
to generate a force map, atomic-scale periodicity is observed (Figure 1(a)) [8]. Lateral and normal
forces are observed to vary with the periodicity of the sample’s lattice. This behavior has been
observed for a wide variety of tips and samples, and a wide range of experimental conditions
(liquid, ambient, controlled atmosphere, vacuum) [1]. When examined in detail (Figure 1(b)), this
behavior is seen to result from discontinuous motion of the tip along the surface. As the lever is
continuously rastered across the sample, the tip traces out the sample’s lattice through a regular
series of stick-slip events [8]. The observed slip can be though of as a fracture event: the interface
has ruptured, and slip by one Burger’s vector (the lattice constant) has occurred.

As seen in Figure 1(b), there is a reproducible lateral force at which the slip occurs. We are
interested in understanding what determines this atomic-scale static friction force, Ff. To do this,
we measure the average value of this friction force at a given load, change the load slightly, then
measure the friction again, and so on. Typically we measure half of the difference between the
average friction force obtained scanning left-to-right and right-to-left, which greatly reduces signal
offsets due to coupling of bending modes and optical misalignment. Atomic-scale stick-slip was
observed for both the Pt/mica experiments. It was not observed for the SiN/DLC experiment,
which is not surprising since both the DLC  and the SiN are amorphous; there is no periodicity.

3.2 Pt/mica interface
Figure 2 shows the variation of friction (circles) with load for the Pt/mica interface. Friction is a
non-linear function of load in contradiction with the macroscopic law of Amontons, Eqn. (1). A
substantial negative load (the pull-off force) must be applied to separate the tip and sample. The
data is well-fit by the Johnson-Kendall-Roberts (JKR) [9] model for the contact area between a
paraboloidal tip and a flat plane. The JKR model balances elastic strain energy with adhesive
interfacial energy to determine the contact area. The end result is a simple, analytic equation:
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Figure 1. (a)  7.5 x 7.5 nm2 lateral force image of the
mica surface.  The fast scan direction is from left to
right.  The black dots represent the repeat units of
the mica lattice, whose periodicity coincides with
the lateral forces.  (b)  Line trace of the section
indicated in (a).  The lateral force exhibits “stick-
slip” behaviour, where the lateral force builds up to
some well-defined maximum value, and then
quickly relaxes (first arrow) by one unit cell.  
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where A is the contact area, R is the tip radius, g is the work of adhesion (also known as the
Dupré energy of adhesion). E* is the reduced Young’s modulus of the tip and sample materials,

given by E* = 1 - n1
2( ) E1 + 1 - n2

2( ) E2( )
-1

where E1, E2 are the Young's moduli of the tip and

sample respectively, and n1, n2 the respective Poisson's ratios. The JKR relation requires that the
tip is paraboloidal. Inverse imaging, described above, verifies that the tip is paraboloidal with a
curvature radius of ~140 nm.

Since contact area varies with load in almost exact proportion to friction, we postulate that:
Ff = t ⋅ A (4)

where t is the interfacial shear strength. Eqn. (4) thus represents the essential relation governing
friction for an elastic single asperity. Furthermore, the pull-off force can be used to determine the
work of adhesion from the following equation:

g =
2LC

3p R
(5)

We further tested the validity of the JKR approach by deliberately altering the tip shape
through application of an extremely high load while sliding. A blunt, flat tip was produced in this
fashion, as verified by inverse imaging. The JKR prediction for contact area will obviously
depend upon the tip geometry. We confirmed that the observed friction-load data was well fit by a
modified JKR model derived using an appropriately flat tip profile [5].

By using bulk values for the elastic constants (Emica = 56.5 GPa, nmica = 0.098 [10], EPt =
177 GPa, nPt = 0.39 [11]), we can solve for the contact radius at zero load, listed in Table 1. We
see that indeed the contact is of nanometer dimensions. Smaller contacts can be formed with
smaller tips and less strongly adhering materials. The JKR analysis also allows us to determine
both the interfacial energy (g) and the shear strength (t) for this interface (Table 1). The values
quoted are for the maximum shear strength and adhesion energy observed for this system; a
gradual decrease of both of these ensued due to contact-induced changes in the tip chemistry, as
described elsewhere [6]. The adhesion energy (derived from the pull-off force) is relatively strong,
surpassing the van der Waals’ energy by an order of magnitude. Likewise, the shear strength is

extremely large. The theoretical prediction for
the shear strength of a crystalline material in
the absence of dislocations is given by ~G/30
[12] where G is the shear modulus. We define
an effective interfacial contact modulus in shear
as Geff = 2Gmica GPt Gmica + GPt( ) ª 22.3 GPa . This

gives, for Pt/mica, t ª Geff 25 . The shear

strength of this system is thus comparable to
Frenkel’s model for the “ideal” material shear
strength [13] whereby the shear strength is
approximately 1/30th of the shear modulus for
a crystal in the absence of dislocations.

3.3  SiN/DLC interface
Figure 4 shows the variation of friction with
load for a DLC film in an environment of <5
and 60% RH measured with a SiN tip. A
measurement was acquired at 5% RH, then a
series of subsequent measurements (not shown)
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Figure 2. Friction (circles) vs. load for a Pt-coated
tip in contact with mica in UHV. The tip is initially
loaded to ~210 nN, then the load is decreased. At
–140 nN, the tip pulls out of contact with the
sample. The solid line is the JKR prediction for the
contact area vs. load.



were acquired at progressively increasing RH
up to 60%, then the RH was lowered again
back to <5%. The data overlap extremely
closely at each humidity. Friction is clearly
higher at 60% RH, but the pull-off force is
identical. For all friction vs. load
measurements, friction monotonically
increases with humidity, but no variation of
the pull-off force is observed.

The data are in excellent agreement with
Eqn. (4), but this time A is not described by
the JKR model, but rather by the Derjaguin-
Müller-Toporov (DMT) model (Figure 4, solid
lines) [14]. This theory is similar to the Hertz
theory for non-adhesive contacts [15], except
that interfacial adhesion gives an offset to the
area-load curve so that the surfaces separate at a
negative force. The DMT model predicts that

the contact area A should vary with load L as follows:
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where, Lc is the critical load or pull-off force. The shear strength is plotted changes by a factor of
1.4 from <5% to 60% RH. The DMT relation gives the work of adhesion g of the interface:

g =
LC

2p R
, (7)

which is similar to Eqn. (5), but with a different numerical factor. The average work of adhesion
for all the measurements here is 0.0547±0.0004 J/m2.

According to classical meniscus theory applied to our conditions, the pull-off force ought
vary substantially with RH [16]. The lack of any change indicates that classical meniscus theory
fails, in accordance with other AFM measurements [17-19]. While the interpretation of the
structure and kinetics of water at this scale is speculative, a minimum amount may be required to
form a meniscus, and that is not possible on the hydrophobic DLC film. The presence of water
molecules nonetheless has a significant effect on friction. There is no experimental technique
which can discern the chemistry and structure of water (or any other species) confined at this
nanoscale interface in-situ. A study using a technique such as molecular dynamics is necessary  to
understand this behavior in more detail.

4  CONNECTIONS TO FRACTURE MECHANICS
In the previous two examples, the friction force is proportional to the true area of contact, with the
constant of proportionality being an interfacial shear strength that is independent of pressure for
the regime studied (Eqn. (4)). In both cases, the contact remains in the elastic regime. Either the
JKR or DMT models of adhesive elastic contact provide excellent fits to the data. A number of
other studies have also demonstrated agreement with Eqn. (4) [1,5,6,20-31], and in some cases the
shear strength does exhibit a pressure dependence [32,33]. However, the JKR and DMT models
neglect the application of any tangential load. Furthermore, cases intermediate to the JKR and
DMT models have not yet been addressed. To deal with these complications, fracture mechanics
can be used.

The JKR model, for example, can be derived using fracture mechanics [34,35]. The contact is
viewed as an external circular crack in an infinite medium. The contact edge represents the crack
front. Loading and unloading is viewed as propagating this crack (advancing or receding) in mode
I. Adhesion is thus represented by attractive forces in a cohesive zone, and the load is represented
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Figure 3. Friction vs. load at <5% (gray) and 60%
(black) RH. Solid lines: DMT fits to the data.



as the applied external separation force. Griffith’s concept of brittle fracture is used to balance
strain energy and interfacial energy to solve for the contact area as a function of load, as
summarized elsewhere [34].

Since it is based on the Griffith concept, the JKR model assumes that the interfacial attraction
has zero spatial range; i.e. the system gains energy only when the materials are in direct contact.
This approach is reasonable only for relatively compliant, strongly adhering materials exhibiting
short-range attraction. Finite range forces have been modeled by others [36,37], with the extreme
opposite limit for stiff, weakly adhering materials with long-range forces described by the DMT
theory [14]. Intermediate cases are treated by Maugis [37] using a Dugdale crack model. Again,
using a mode I fracture mechanics approach, this time with a constant adhesive stress acting over a
finite distance, Maugis provides an analytic solution that predicts the contact area for the JKR and
DMT limits, and for cases in between. Maugis’ equations are relatively complicated; a simplified
form of the solution has been derived which facilitates fitting this model to experimental data
[38]. In any event, for these cases, the contact area varies with load in a significantly different
fashion compared with the JKR solution.

These models assume only normal loading, thus neglecting effects that the substantial applied
lateral force has upon the contact area. Johnson [34] has combined the Dugdale model of Maugis
with interacting mode I, II and III fracture mechanics. This theory thus includes the influence of
the lateral force upon the contact area, and allows the interaction forces to have a finite range.
Using this finite range mixed-mode fracture approach, Johnson predicts that the contact area can be
reduced appreciably by partial slip at the contact edge which is induced by the applied lateral
force. Reference [34] contains a comparison to the same data shown in Figure 2. According to this
model, the shape of the area-load relation for this particular set of data still resembles the JKR
curve, but with different (smaller) absolute values. The model also predicts that the lateral force
causes pull-off to occur at a smaller load compared to the direct pull-off force (measured without
sliding). This model can be tested with AFM by comparing the direct and sliding pull-off forces.
A statistical analysis was conducted for the Pt/mica system, revealing an average reduction of the
pull-off force by a factor of 0.89 due to sliding. Using this result, the data presented in Figure 2
can be fit by this modified theory, resulting in an increase of the shear strength by about 20%
compared with the JKR fit. While the observed pull-off reduction supports Johnson’s model, it is
not a direct verification that the contact area itself changes due to sliding.

The high shear strength observed for the Pt/mica interface remains to be fully explained. It is
consistent with large shear strengths reported in other experiments [27,28,39]. Recent modeling
by Hurtado and Kim [13,40] using dislocation mechanics suggests that below a critical contact
size (in the nm range), strongly adhered contacts should exhibit such ideal shear strengths. The
strong attractive forces may create a substantial degree of commensurability of the interfacial
atoms, thus producing an interface that is resistant to shear, as in a crystalline material. At this
scale, according to the theory, the contact is too small to allow the nucleation of even a single
dislocation at the contact edge. Dislocation nucleation is predicted to reduce the shear strength
substantially at larger scales. Experiments that test this model more thoroughly are desirable.

5  CONCLUSIONS
Single-asperity friction measurements at the nano-scale consistently reveal that the friction force is
proportional to the true interfacial area of contact, frequently resulting in a non-linear dependence
of friction upon load. Fracture mechanics provides a useful formalism for describing the complex
relationship between contact area and load for these adhesive contacts which are also subject to
significant tangential loads. While further work is required to fully verify these models, these
advances have shed new light onto the mechanics of nano-scale friction, and this insight can now
be applied to the more challenging study of real, multi-asperity contacting interfaces such as those
present in micromachine devices or macroscopic systems.
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