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ABSTRACT
A new multi-scale approach for the computation of stress intensity factors is proposed. The two scales of
interest are i) the macroscopic scale, which involves a boundary value problem solved by the finite element
method (FEM) on the real geometry, and ii) the mesoscopic scale, associated with a local boundary value
problem solved  by the  extended  finite  element  method  (X-FEM)  on  one  element  at  a  time  of  the  real
geometry,  including  cracks  and  singularities.  The  two  scales  are  linked  using  a  hierarchical  or  nested
approach.  The problem solved at the mesoscopic scale by the extended finite element method provides the
stress  tensor  and  the  tangent  stiffness  tensor  at  the  integration  point  of  the  macroscopic  finite  element
problem. The cracks are represented both at the macroscopic and mesoscopic scales by level sets. As a result,
any geometrical  singularity can be virtually inserted in  the  real  geometry without  need for a conforming
mesh. These singularities are not seen but felt by the global FE code through a modified tangent stiffness
tensor and a reduced stress at the integration point. The cracked element can be seen as a damaged region.
The method has been used with success to determine the KI stress intensity factor in a standard 2D geometry.
An extended “interaction”  matrix is  defined  in  order  to  evaluate  the  loss  of  information  induced by the
hierarchical approach with respect to the reference solution obtained by solving the global problem with the
extended finite element method.

1  INTRODUCTION 
Industrial procedures for the determination of the total fatigue life of structural components involve
the computation of the stress intensity factors (SIFs) KI  , KII  and KIII  together with the knowledge
of a law of propagation relating their evolution to the rate of increase of the crack length a. 

One of the most commonly used procedures is the following.  First, a set of critical loading
conditions is determined from a load spectrum. These conditions are analysed independently by
using a FE code to identify the regions where the principal stresses are the most severe.
     Then pure mode I fracture is assumed to occur in the direction normal to the highest principal
stress. At this point, a crack of the smallest detectable length should effectively be inserted in the
mesh  (micro-mechanical  models  of  crack  initiation  are  still  today  rarely  used)  and  the  stress
intensity  factors  computed  with the  displacements  resulting  from the  FE  simulation.  Different
techniques  are  available  which  are  generally  cumbersome  and  time-consuming.  Therefore  it
appears that the most widespread technique consists of evaluating analytically or numerically the
SIFs on an equivalent uni-dimensional rod in the framework of the linear elastic fracture mechanics
(LEFM). The total life is deduced based on this value of KI, on an experimental Paris or Forman
law and on the load spectrum. 
     Inserting a crack in the real  geometry generally implies   the modification of the Computer
Assisted Design (CAD) data as well as the adaptation of the mesh. Inserting parameterised cracked
meshes under the form of adequately sized boxes is an alternative, but the operation has to be
performed iteratively as the crack propagates. Furthermore, imposing the proper conditions at the
interface  between  the  parameterised  and  original  meshes  can  be  difficult.  Note  finally  that
accounting for mixed mode fracture is extremely important when dealing with complex local stress
states. 



Moës et al.  [1] propose a promising non standard FE techniques based on the partition of the
unity property,  which allows the  occurrence of  discontinuities  of  displacement  or  strain.  New
degrees of freedom and shape functions are added in such a way as to account for the singularities,
which are modelled by Level Sets, Sethian [2]. 
     The  eXtended  Finite  Element  Method  (X-FEM)  has  been  shown  to  provide  good
approximations of the SIFs and crack paths, and is expected to be widely used in the near future by
most of the industrial actors of the sector of Aeronautics. However, in order to be integrated in
daily design procedures, the extended finite element and Level Set (LSM) methods have to be
introduced in existing commercial FE codes, which involves lots of difficulties. As a result, it is
reasonable to assume that the technique will not be available in industrial procedures for fatigue
life determination within a short period of time.
     Therefore, according to the work of Feyel & Chaboche [3] or Smit et al. [4], it was deemed
interesting to implement a hierarchical approach allowing the use of the extended finite element
and level set methods at the local scale and take profit of their particular features, e.g. the user-
friendly insertion and propagation of a crack, while keeping the classical finite element formulation
at the global scale. This is possible in most commercial finite element software via the use of a
typical “User Material” interface. 
     It is worth mentioning again that although this approach renders the use of the X-FEM possible
at the local scale, it is not a full implementation of the method: the discrete character of the crack is
replaced at the macroscopic scale by a modified tangent stiffness, the element containing the tip of-
or  cut  by the crack can be seen as  a  homogenized damaged medium. Together  with the scale
transition, some of the mathematical features are lost (e.g., continuity of the crack opening from
element to element in the macroscopic mesh) and the “extended” or “non-local” character of the
crack is, to a certain extent, neglected.     

The present paper is organised as follows: first, the hierarchical approach is presented, with
emphasis on the definition of a well posed local boundary value problem (BVP). Then, the method
is applied to uni-axially loaded standard 2D cracked samples and the predicted mode I SIF is
compared  with  the  corresponding  analytical  value  and  with  the  results  obtained  by  different
numerical  techniques.  Finally a  method is  proposed  to  validate the approach by evaluating an
“interaction” matrix representative of the loss of information implied by the hierarchical approach
compared to the full X-FEM simulation performed on the real geometry.

2  DESCRIPTION OF THE HIERARCHICAL APPROACH
Finite element codes require a  bilinear operator at each integration point to assemble the global
stiffness matrix of the FE problem  Kcc in  Kccuc = Fc.  In the case of elasto-statics, this  bilinear
operator is the 4th order Hooke tensor  Cijkl, linking the 2nd order strain tensor  ij to the 2nd order
stress tensor ij via the relationship ij=Cijklkl. In the framework of a static non-linear analysis, this
operator is the tangent or elasto-plastic stiffness tensor Hijkl = dij/dkl. The tensors ij and Hijkl can
be derived from semi-analytical models or may be evaluated by solving a local FE problem on a
representative volume element (RVE). In this case, the characteristic length of the local problem
solved at each integration point is very small with respect to the characteristic length of the global
problem. This is the core of micro-macro approaches. 

In the present paper, the local problem is solved by the extended finite element method. The
material is assumed to remain elastic. At this point, the main difference comes from the fact that
the homogenised stiffness tensor is calculated by applying independent loading cases to a non-
representative volume element. It is a meso-macro approach (see Figure 1). 

The  cracks  are  defined  both  at  the  macroscopic  and  mesoscopic  scales.  They  are  first
represented  by  a  pair  of  normal  and  tangent  level  sets  evaluated  at  the  nodes  of  the
macroscopic/global mesh. If an element of the global mesh is found to be cut through by, or to con-



Figure 1: The FEM-XFEM hierarchical approach

tain the tip of a crack, a local mesh is defined and the level sets are evaluated at the local nodes. 
The  homogenized  stiffness  tensor  is  evaluated  by  imposing  either  fully  cinematically

constrained boundaries (i.e.  linear displacements) or  fully statically constrained boundaries (i.e.
uniform  tractions).  The  first  condition  is  too  constraining  and  implies  crack  closure,  as  a
consequence,  the  homogenised  stiffness  is  overestimated.  Therefore,  the  condition  of  uniform
traction is more appropriate and even leads to conservative results. In 2D, three sets of independent
loading  conditions  are  necessary to  determine  the  homogenised  stiffness  tensor.  The  stress  is
determined by multiplying the strain supplied by the FE code by the computed stiffness tensor. The
stiffness tensor is the same at each Gauss point of one macroscopic element while the computed
stress depends on the strain given by the FE code. The problem of a completely cut element in the
global mesh can also be treated analytically. 

3  APPLICATION
As a preliminary case, the method has been used to compute the KI stress intensity factor in a uni-
axially loaded standard 2D sample (Figure 3). The dimensions are a/L = 0.25 and L/H = 0.1.  

A structured mesh of 4-noded quadrangles with linear shape functions and 8 Gauss points is
used to model the macroscopic sample. In the hierarchical approach, each quadrangle is in turn
considered as a geometry on which a local BVP must be solved. Each quadrangle is then meshed
and recursively refined with 3-noded linear triangles (the total number of degrees of freedom is
368, including the enriched dofs). Only the Heaviside function and the first crack tip enrichment
(r1/2 * sin(t/2)) are used to enrich the basis of the shape functions, which is the core of the X-FEM.
As far as a bi-dimensional case is concerned, three independent loading cases are imposed using
statically  constrained  boundaries.  Completely  cracked  quadrangles  lead  to  a  loss  of  major



symmetry of the stiffness tensor. As a result non-symmetric bilinear operator should be given to the
host FE code. The cases of non-symmetric and of zero (i.e. the material looses all its strength)
Hooke tensors have been considered, showing differences of less than 1% in the calculated mode I
stress intensity factor.

The stress intensity factor is calculated on basis of the displacements of the nodes of the global
mesh.  A domain integral  is  used to  compute  the  energy release  rate  at  the  crack  tip  and  the
interaction integral is used to derive the SIFs. The gradients of the level sets are used to build the
local coordinates system. The details can be found for instance in Moës et al. [5]. 

The pure mode I SIF KI,MS (MS yields for Multi-Scale) is calculated for various levels of mesh
refinement (defined as the number of elements along x in the global mesh) and plotted in Figure 4
as a function of the computational time. In this figure, KI,MS  is also compared to
– the corresponding analytical value KI,A  given by 
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Note that H must be greater than 2L;  
– the value KI,X computed with the stand alone XFEM-Xcrack code using the Heaviside and the

four crack tip enrichment functions;
– the value KI,k calculated by setting to zero the stiffness of all the elements cut or touched by the

crack (this is similar to element killing).
All the methods converge when the global mesh is refined. It must be pointed out that the local

refinement in the hierarchical approach has a beneficial effect on the resulting value of the mode I
SIF. The theoretical value is approached with coarser meshes. 

The total number of dofs involved in the solution of the mesoscopic problem lead to a limited
computational cost. Even in 3D cracked geometries, the computation time remains limited as the
procedure only affects the elements which contain a part of the crack front. 

Figure 3: A standard 2D sample submitted to uni-axial loading.



Figure 4: Comparison of the values of the stress intensity factor KI  calculated using various
methods as a function of the computational time.

The method must  now be validated  extensively in 2D and 3D towards comparison with i)
analytical  results and ii)  detailed FE and XFE simulations, for all  the modes (including mixed
modes) of fracture. 
    

4  DEFINITION OF AN INTERACTION MATRIX
Let us get into the details of the linear system generated by the extended finite element method in
order to solve a BVP featuring a discontinuity of displacement, i.e. a crack:
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where uc and ue are the classical  and the enriched degrees of freedom, respectively.  Kcc is the
stiffness matrix  of  the  classical  finite  element  problem,  Kee is  the  stiffness matrix  linking the
enriched dofs together, while Kce and Kec induce a coupling between the classical and the enriched
dofs.  It is assumed that Fe = 0, i.e. there are no forces applied on the enriched dofs. Eliminating the
enriched dofs in eqn (3) leads to the system of eqn (4) 
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which corresponds to a classical FE problem with a particular global stiffness matrix. After [6], the
“interaction matrix” D was defined as the difference between the Kcc matrix (for an ideally elastic
material and no discontinuities) and the current stiffness matrix of the classical FE problem. From
eqn (4),  DX is naturally identified as  T

ce
1

eece KKK  . The matrix  DX induces additional constraints
between the classical dofs which are not linked in  Kcc, so that the effect of the crack is naturally
extended to several elements (this is the “non-local” character of the crack).

In  the  hierarchical  or  multi-scale  approach,  the  terms  of  Kcc are  affected  directly  while
assembling it.  Indeed,  the local homogenized Hooke operator  leads to a lower stiffness for the
cracked  medium than  for  the  bulk  material.   No  expression  of  the  interaction  matrix  DMS is



available. However, its value could be calculated as DMS = Kcc – KMS and compared to DX.  
The comparison between  DMS and  DX will lead to the quantitative evaluation of the loss of

information (among them and to certain extent, the non-local character of the crack) associated
with the use of the present multi-scale approach, with respect to the stand alone extended finite
element method taken as reference. 

5  CONCLUSION
A new FEM-XFEM nested / hierarchical meso-macro approach was proposed for the computation
of stress intensity factors. Although this method does not consist of the rigorous implementation of
the XFEM in the commercial FE codes, it permits the arbitrary introduction of cracks in a real
geometry without the need for re-meshing. The method provided a good approximation of the
mode I SIF for a crack in a 2D standard geometry. The method must be validated on a large
number of 2D and 3D cases. The concept of  “interaction matrix” was proposed to quantify the
discrepancy  between  the  result  of  the  present  multi-scale  approach  and  the  standard  X-FEM
reference solution.
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