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ABSTRACT 

An improved generalized law for combined energetic-probabilistic size effect on the nominal strength for 
structures failing by crack initiation from a smooth surface is used for practical purposes – the paper proposes 
a procedure to capture both deterministic and statistical size effects on the nominal strength of quasibrittle 
structures failing at crack initiation. The advantage of the proposed approach is that the necessity of time 
consuming statistical simulation is avoided, only deterministic nonlinear fracture mechanics FEM calculation 
must be performed. Results of deterministic nonlinear FEM calculation should follow deterministic-energetic 
formula, a superimposition with the Weibull size effect, which dominates for large sizes using the energetic-
statistical formula, is possible. As the procedure does not require a numerical simulation of Monte Carlo type 
and uses only the results obtained by deterministic computation using any commercial FEM code (which can 
capture satisfactorily deterministic size effect), it can be a simple practical engineering tool.  
 

1  INTRODUCTION AND SIZE EFFECT FORMULAE 
Practical and simple approach to incorporate the statistical size effect into the design or the as-
sessment of very large unreinforced concrete structures (such as arch dams, foundations and earth 
retaining structures, where the statistical size effect plays a significant role) is important. Failure 
load prediction can be done without simulation of Monte Carlo type utilizing the energetic-
statistical size effect formula in mean sense together with deterministic results of FEM nonlinear 
fracture mechanics codes.  
     This work is based on the latest achievements of Bažant, Vořechovský and Novák [1] who 
proposes a new improved law with two scaling lengths (deterministic and statistical) for combined 
energetic-probabilistic size effect on the nominal strength for structures failing by crack initiation 
from smooth surface. The role of these two lengths in the transition from energetic to statistical 
size effect of Weibull type is clarified. Relations to the recently developed deterministic-energetic 
and energetic-statistical formulas are presented. The paper by Bažant, Vořechovský and Novák [1] 
also clarifies the role and interplay of two material lengths: deterministic and statistical. 
     The deterministic energetic size effect formula for crack initiation from smooth surface reads 
(e.g. Bažant, Bažant and Planas, Bažant and Novák) [2,3,4]: 
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where σN is the nominal strength depending on the structural size D . Parameters fr

∞, Db and r are 
positive constants representing the unknown empirical parameters to be determined. Parameter fr

∞ 
represents solution of the elastic-brittle strength which is reached as a nominal strength for very 
large structural sizes. The exponent r (a constant) controls the curvature and the slope of the law. 
The exponent offers a degree of freedom while having no effect on the expansion in derivation of 



the law (Bažant, Bažant and Planas) [2,3]. Parameter Db has the meaning of the thickness of 
cracked layer. Variation of the parameter Db  moves the whole curve left or right; it represents the 
deterministic scaling parameter and is in principle related to grain size and drives the transition 
from elastic brittle (Db=0) to quasibrittle (Db >0) behavior. 
     By considering the fact that extremely small structures (smaller than Db) must exhibit the plas-
tic limit, a parameter lp is introduced to control this convergence. The formula (1) represents the 
full size range transition from perfectly plastic behavior (when D→0;D lp) to elastic brittle be-
havior (D→∞;D Db) through quasibrittle behavior. Parameter lp governs the transition to plastic-
ity for small sizes D (crack band models or averaging in nonlocal models leads to horizontal as-
ymptote). The case of lp ≠0 shows the plastic limit for vanishing size D and the cohesive crack and 
perfectly plastic material in the crack both predicts equivalent plastic behavior. For large sizes the 
influence of lp decays fast and therefore the cases of lp ≠ 0 are asymptotically equivalent to case of 
lp = 0 for large D. 
     The large-size asymptote of the deterministic energetic size effect formula (1) is horizontal: 
σN(D)/fr

∞=1, see fig. 1a). But this is not in agreement with the results of nonlocal Weibull theory 
as applied to modulus of rupture (Bažant and Novák [5]), in which the large-size asymptote in the 
logarithmic plot has the slope –n/m corresponding to the power law of the classical Weibull statis-
tical theory (Weibull [6]). In view of this theoretical evidence, there is a need to superimpose the 
energetic and statistical theories. Such superimposition is important, for example, for analyzing the 
size effect in vertical bending fracture of arch dams, foundation plinths or retaining walls. 
     The statistical part of size effect and the existence of statistical length scale have been investi-
gated in detail (Vořechovský and Chudoba [7]) for particular case of glass fibers. The work shows, 
briefly, that the statistical part of size effect in structures with stationary strength random field has 
a large-size asymptote in the classical Weibull form (straight line in double-log plot –n/m) while 
the left (small size) asymptote is horizontal. The value of the horizontal asymptote for D→0 is the 
mean strength of the random field, and in Weibull understanding it is the mean strength measured 
for the reference length being equal to the autocorrelation length ls. So by introduction of the ran-
dom strength field we introduce the length scale (ls). 
     By incorporating this result (statistical part) into the formula (1) we get a final law (Bažant, 
Vořechovský and Novák [1]):  
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This formula (which is very close to a general law derived by Bažant [8]) exhibits the following 
features:  
• Small size left asymptote is correct (deterministic), parameter lp drives to fully plastic transi-

tion for small sizes.  
• Large size asymptote is the Weibull power law (statistical size effect, a straight line with the 

slope –n/m in the double-logarithmic plot of size versus nominal strength) 
• The formula introduces two scaling lengths: deterministic (Db) and statistical (L0). The mean 

size effect is partitioned into deterministic and statistical parts. Each have its own length scale, 
the interplay of both embodies behavior expected and justified by previous research. Parame-
ter Db drives the transition from elastic-brittle to quasibrittle and L0 drives the transitional 
zone from constant property to local Weibull via strength random field. Note that the autocor-



relation length ls has direct connection to our statistical length L0. This correspondence is ex-
plained in papers by Vořechovský and Chudoba [7] or Bažant, Vořechovský and Novák [1].  

Having the summation in the denominators limit both the statistical and deterministic parts from 
growing to infinity for small D. So it remedies the problem that the previous energetic-statistical 
formulas (Bažant and Novák [4,5]) intersect the deterministic law at the size D=Db and therefore 
gives higher mean nominal strength prediction for small structures compared to the deterministic 
case. 
     Note that for m→∞ it degenerates to deterministic formula (1). The same applies if L0→∞. The 
interplay of two scaling lengths using the ratio L0/Db is demonstrated by Bažant, Vořechovský and 
Novák [1]. The question arises what is in reality the ratio L0/Db? Since both scaling lengths are in 
concrete probably driven mainly by grain sizes, we expect L0≈Db, so the simpler law with L0=Db 
should be an excellent performer in practical cases. 
 

2  SUPERIMPOSITION OF FEM DETERMINISTIC-ENERGETIC AND STATISTICAL SIZE 
EFFECTS 

 
As was already mentioned deterministic modeling with NLFEM can capture only deterministic 
size effect. A procedure of superimposition with statistical part should be established. Such 
procedure of the improvement of the failure load (nominal stress at failure, deterministic size 
effect prediction) obtained by a nonlinear fracture mechanics computer code can be as follows: 
 
1)  Suppose that the modeled structure has characteristic dimension Dt. The natural first step is to 
create FEM computational model for this real size. At this level the computational model should 
be tuned and calibrated as much as possible (meshing, boundary conditions, material etc.). Note 
that we obtain a prediction of nominal strength of the structure (using failure load corresponding to 
the peak load of load-deflection diagram) for size Dt, but it reflects only deterministic-energetic 
features of fracture. Simply, the strength is usually overestimated at this (first) step; the overesti-
mation is more significant as real structure is larger. Result of this step is a point in the size effect 
plot presented by a filled circle in figure 1a).  
 
2)  Scale down and up geometry of our computational model in order to obtain the set of similar 
structures with characteristic sizes Di, i=1,…, N. Based on numerical experience a reasonable 
number is around 10 sizes and depends how the sizes cover transition phases. Therefore, sizes Di  
should span over large region from very small to very large sizes. Then calculate nominal strength 
for each size σi , i=1,…, N. Note that for two very large sizes nominal strengths should be almost 
identical as this calculation follows energetic size effect with horizontal asymptote. If not, failure 
mechanism is not just only crack initiation, other phenomena (stress redistribution) plays more 
significant role and the procedure suggested herein cannot be applied. The computational model 
has to be mesh-objective in order to obtain objective results (e.g. crack band model, nonlocal dam-
age continuum) for all sizes. In order to ensure that phenomenon of stress redistribution (causing 
the deterministic size effect for the range of sizes) is correctly captured, well tested models are 
recommended for strength prediction. A special attention should be paid to the selection of consti-
tutive law and localization limiter. The result of this step is a set of points (circles) in the size ef-
fect plot as shown in figure 1a). 
 



Figure 1: Illustration of the superimposition 
steps. a) Steps 1-4 resulting in deter-
ministic fit; b) step 5 – determination 
of parameter L0;  c) final formula and 
nominal strength prediction for the 
real structural size 

3)  The next step is to obtain the optimum 
fit of the deterministic-energetic formula (1) 
using the set of N  pairs {Di, σi } i=1,…, t, 
…, N. The result of this step is the set of 
values of four parameters: fr

∞, Db, r and lp. 
The parameter lp can be excluded from the 
fit based on the plastic analysis (this is fully 
described by Bažant, Vořechovský and 
Novák [1]). Fit of the parameter fr

∞ can also 
be avoided because this limit can be esti-
mated from nonlinear FEM analysis as the 
value to which the nominal strength con-
verges with increasing size. So we can be 
prescribe (for very large sizes),  σN /fr

∞=1 as 
asymptotic limit. The result of this step is 
illustrated by a fitted curve to the set of 
points in figure 1a).  
 
4)  There are three remaining parameters 
which should be substituted into statistical-
energetic formula (2): n,m and L0. Parameter 
n is the number of spatial dimensions (n=1,2 
or 3). Parameter m represents the Weibull 
modulus of FPZ with Weibull distribution 
of random strength. Recent study due to 
Bažant and Novák [4] reveals that, for con-
crete and mortar, the asymptotic value of 
Weibull modulus m≈24 rather than 12, the 
value widely accepted so far. The ratio n/m  
therefore represents the slope of MSEC in 
the size effect plot for D→∞. This means 
that for extreme sizes the nominal strength 
decreases, for two-dimensional (2D) simi-
larity (n=2), as the -1/12 power of the struc-
ture size. Note, that for different material 
the asymptotic value of Weibull modulus is 
different, e.g. for laminates much higher 
than 24. Result of these 4 steps are shown 
for illustration in fig 1a). 
     Parameter L0 is now only remaining 
parameter to be determined. As it represents 
statistical length scale it seems to be that we 
will need to utilize statistical software 
incorporated into your NLFM code. But 
there is much simpler alternative based on 
simple calculation of local Weibull integral.  
     A choice of statistical length scale ls is a primary task and must be made (a good judge may be 
probably ls≈Db. Since the choice about a scatter of FPZ strength must be made (Weibull modulus 
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m  driving the power of size effect for large sizes), one can compute large size structure having the 
Weibull strength of each FPZ. Once the mean strength of such large structure is known (a point in 
the size effect plot with coordinates Dstat , σstat, one can pass a straight line of slope n/m through 
the point (Weibull asymptote). Graphically, the intersection of the statistical (Weibull) asymptote 
with deterministic strength for infinite structure size (horizontal asymptote) fr

∞ gives the statistical 
scaling length on D-axis, see figure 1b). The numerical solution to L0 can be written as:  
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and therefore this parameter does not need to be fitted, analytical expression can be used. Note that 
the large size strength (mean strength σstat) can be computed by Weibull integral, where the choice 
of reference volume V0 and Weibull modulus (scatter) must be made (this is described in detail e.g. 
by Bažant and Planas [3]):  
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where V is the volume (area, length) of the structure depending on dimension (n), s0 is the Weibull 
scaling parameter and V0 is an elementary volume of the material for which the Weibull distribu-
tion has parameters m and s0. The function σ(x) is the maximum principal stress at a point of coor-
dinate vector x. One can avoid the computation of nonlocal integral (and determination of load 
leading to Pf corresponding to the mean load) by means of numerical simulation of Monte Carlo 
type. In such case we recommend to use the stability postulate of extreme values for discretization 
of random blocks and their association with scaled PDF. This approach has been used in the nu-
merical example and is described in detail by Novák, Bažant and Vořechovský [9,1]. 
 
5)  As all parameters of statistical-energetic formula are determined, nominal strength can be cal-
culated for any size. Using real size of the structure Dt the prediction of the corresponding nominal 
strength σN,t can be done using (2). This prediction will be generally different (lower) from initial 
deterministic prediction, figure 1c). The larger structure the larger difference is. The formula will 
provide us the strength prediction for the mean strength. Additionally, a scatter of strength can be 
determined just using the fundamental assumption of Weibull distribution. For the distribution we 
know two parameters, shape parameter m is prescribed initially, and scale parameters s can be 
calculated easily from predicted mean and Weibull modulus. 
 



  3  SUMMARY AND CONCLUSIONS 
 
The paper presents an analytical formula for the nominal mean strength prediction of crack initia-
tion problems. The paper suggests a practical procedure of superimposition of deterministic and 
statistical size effect at crack initiation. It requires only a few FEM analysis using scaled sizes and 
simple linear stochastic simulation of a large size structure. The prediction can be done without 
complicated and time consuming Monte Carlo simulation, which is usually used to deal with in-
fluence of uncertainties on structural strength. 
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