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ABSTRACT 

The aim of this paper is to inspect the vibrational response of a beam with an edge non-propagating crack by 
means of stochastic analysis, in order to detect the presence and the location of structural damage. The non-
linear behavior of the beam due to the opening and closing of the crack is fully exploited. The non-linearity 
measure is based on the response evaluation of the beam subjected to a white noise process. Both numerical 
and experimental investigations regarding a cantilever beam with a crack are reported in the paper. 

 
1  INTRODUCTION 

Damage detection by means of non-destructive testing plays an important role in ensuring the 
integrity of machine elements and structures. The techniques commonly employed are based on 
vibration measurement, which offers a convenient tool for investigating crack presence and 
position. 
 Some research has been devoted in modeling the cracks as always open during vibrations. In 
these works crack location and amplitude may be detected from alterations in natural frequencies 
and modes of vibrations as well as amplitude of forced vibrations (Yuen [1], Kisa et al. [2]). 
However, as the cracks usually exhibit non-linear behavior, the need of modeling the crack closure 
has been widely recognized. In fact, if an insufficient static preload is present, the cracks open and 
close depending on the vibration direction causing the variation of the physical system parameters 
such as the stiffness. Qian et al. [3] and Ruotolo et al. [4] investigated the variation of the modal 
properties and of the deterministic response under harmonic input caused by the presence of a 
breathing crack. 
 Herein a stochastic approach is employed which assumes the probabilistic characteristics of the 
beam response under stochastic input as an indication of the crack presence and position. Such a 
choice is motivated by the radical change encountered by some of the response properties as soon as 
a crack occurs in the beam. In fact, if the beam is undamaged (linear state) and a Gaussian load is 
applied, the structural response will be Gaussian too. On the contrary, if non-linearity arises, due to 
the appearance of a crack, the response becomes non-Gaussian. Inspection of the integrity of the 
structural element may be performed by estimating the non-Gaussianity of the response, through the 
evaluation of higher order statistics. The non-Gaussianity may be revealed in several ways. The 
choice of the measure to detect the non-Gaussianity is a crucial point to give clear information on the 
beam condition when the crack has small depth. For example, Rivola and White [5] have employed a 
frequency domain procedure based on the measure of the bispectrum for the detection of a crack in a 
straight beam modeled as a single degree of freedom system. Cacciola et al. [6] performed a time 
domain analysis where the beam is discretized by finite elements in which a so-called closing crack 
model, with fully open or fully closed crack, is used to describe the damaged element. They 
evidenced a remarkable variability of the skewness at the rotational degrees of freedom for different 
crack locations and depths, assessing the capability of this measure to detect both the presence and 
the position of the crack along the beam even if the crack depth is small. 



 The present paper briefly summarizes the damage identification procedure proposed by 
Cacciola et al. [6]. Then, new numerical solutions pertaining the case of a base stochastic 
acceleration applied to a cracked cantilever beam are derived. Furthermore the experimental 
results gathered from the first tests on a shaking table are discussed. A favorable comparison with 
predictions from numerical analysis is shown. 

 
2  ANALYTICAL MODEL OF THE CRACKED BEAM 

The presence of a crack in the beam, according to the principle of Saint Venant, causes a 
perturbation of the stress field in the neighborhood of the breach. Such a perturbation is relevant 
especially when the crack is open and determines a local reduction of the flexural rigidity. On the 
other hand, when the crack is closed the beam acts, approximately, as a homogeneous beam with 
no crack. A natural choice is a finite element formulation of the problem. In this case, the 
properties of the cracked element, changing during the motion, determine the non-linearity of the 
whole system, being constant the parameter modeling all the other elements. According to several 
authors [2,3,4] the stiffness matrix is the structural property that is most affected from the 
breathing of the crack, as damping and mass matrices do not change appreciably during the 
opening and closure of the crack.  

In the following, the finite element model for the cracked beam with an on-edge non-
propagating crack, proposed by Qian et al. [3] is adopted. Undamaged elements of the beam are 
modeled by Euler type finite elements with two nodes and two degrees of freedom (transverse 
displacement and rotation) at each node. The cracked element will be modeled as an undamaged 
element if the crack is closed whereas it exhibits a more flexible behavior if the crack is open. A 
non-propagating crack will be considered so that the characteristics of the cracked element in the 
crack open phases do not change during motion. Then, the problem is of piecewise interval nature 
in time domain, the closure and opening phases being governed by two different sets of linear 
equations differing just for the stiffness matrix of the cracked element. 
 The stiffness matrix of the undamaged element with rectangular cross section is that given by 
Bernoulli-Euler theory with Hermite shape functions: 
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An explicit expression for the matrix of the cracked element was first derived in [6], where it has 
been cast in the following form 
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The plot of the four coefficients is given in Figure 1 for several values of the crack depth. 
 

 



0 0.5 1 1.5 2
0

0.5

1

0 0.4 0.8 1.2 1.6 2
1

2

3

4

5

0 0.4 0.8 1.2 1.6 2
1

2

3

4

5

0 0.4 0.8 1.2 1.6 2
1
2
3
4
5
6a=0.1 h

a=0.2 h

a=0.3 h

a=0.4 h

a=0.4 h

a=0.3 h

a=0.2 h
a=0.1 h

r=h/l

α1

r=h/l r=h/l r=h/l

α2 α3
α4

a=0.4 h

a=0.3 h

a=0.2 h
a=0.1 h a=0.1 h

a=0.2 h

a=0.3 h

a=0.4 h

 
Figure 1: Coefficient values in the stiffness matrix of the cracked element ( /r h l=  is the  
ratio between the height and the length of the element; a is depth of the crack). 

 
 
2.1 Equation of motion 
The dynamic response of the beam in the time intervals the crack is closed may be regarded as that of 
a beam without crack, because the crack interfaces are completely in contact with each other. Under 
the action of the excitation force, crack opening and closure will alternate as a function of time. 
 The equations of motion of a cracked beam discretised by Ne finite elements and subjected to 
a base acceleration ( )gu t&&  can be written adopting the usual symbols as: 
 
 0 0( ) ( ) ( ) ( ) ( );   (0) , (0)u gt t t u t+ + − γ = − = =τMu Cu K K u M u u u u&& & && & &∆  (3) 
 
It has been assumed that the change between fully open and fully closed takes place 
instantaneously through the two-valued function γ  ( γ = 1 when the crack is open; γ = 0 when the 
crack is closed) giving rise to a bilinear-type non-linearity. The change in the global stiffness 
matrix due to the crack is u c= −K K K∆ , being uK  and cK  the stiffness matrices of the 
undamaged and damaged beam, respectively.  

During crack closure, compression acts on the crack interface and the strain at the opposite 
edge is positive (tensile) and, conversely it is negative (compressive) during crack opening. 
Accordingly, the opening and closure of the crack on one edge of the beam can be detected by the 
sign of strain in the opposite edge. Assuming Hermite interpolation for the deformed shape of the 
cracked element, both for the open and the close phase, and under the circumstance the crack is 
located in the midpoint of the i-th element, then the sign of the strain is equal to the sign of the 
difference between the rotation at the nodes of the cracked element. Then, to determine the state of 
the crack it is sufficient to evaluate the slopes φi and φi+1 of the response deformation at the nodes i 
and i+1, closest to the crack. In particular, if the slope is positive when counter clockwise, the 
condition of closing is φi+1 > φi.. 
 A convenient numerical procedure to solve eqn. (3) was presented by Cacciola and 
Muscolino [7] and will be adopted in the numerical applications.  

 
3  USE OF STOCHASTIC ANALYSIS FOR CRACK DETECTION 

It is well known from stochastic mechanics that a linear system driven by Gaussian stationary 
stochastic process undergoes steady state Gaussian stationary oscillations. This means that only 
first and second order statistical information are sufficient to completely describe the stationary 
stochastic response of the system. Moreover such statistics, namely the mean vector and the 
covariance matrix of the degrees of freedom, can be easily determined and the exact solution is 
available in the case the forcing function is a white noise.  



If the system is non-linear the stochastic response under Gaussian input is not Gaussian 
anymore. Then, the presence of non-Gaussianity in the response may be employed to assess the 
presence of damage in the structure. This means that higher order measures such as skewness 
(third order), kurtosis coefficients (fourth order), higher order cumulants or statistical moments 
may provide details about the response that the conventional second order statistics cannot.  
The major issue is the choice of the right parameters to be estimated so to detect the non-Gaussian 
behavior of the structural response. For the case under study of a beam with an edge crack, the 
opening and closure of the crack causes the non-Gaussianity of the nodal displacement and 
rotation processes. However, if the crack depth is small in comparison with the beam height then 
such non-Gaussianity may be overlooked. For these reasons it is important to select the proper 
higher order statistics at given measure points, so that these are much sensitive to the crack 
presence. In the following, the skewness coefficient 3γ  and the kurtosis coefficient 4γ  of the 
stationary response at nodal degrees of freedom will be considered: 
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where 2k , 3k  and 4k  are the second, third and fourth cumulants of the generic nodal degree of freedom u , 
namely, 
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being [ ]E •  the mean operator, µ  the mean value and 2σ the variance. 

The skewness coefficient quantifies the asymmetry of the probability density function present 
in the response due to non-symmetric non-linearity in the stiffness matrix of the cracked element. 
The kurtosis coefficient is a measure of whether the data are peaked or flat relative to a Gaussian 
distribution. That is, data sets with a high kurtosis tend to have a distinct peak near the mean, 
decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near 
the mean rather than a sharp peak.  

Under white noise Gaussian stationary excitation, the skewness and kurtosis coefficients 
vanish if the system is linear, i.e. the beam is undamaged, whereas the coefficients do not vanish if 
the system is non-linear, i.e. a crack is present. As the crack depth increases, the coefficient 
moduli, generally, increase too due, to more pronounced non-Gaussian behaviour. 
The evaluation of the shape indices 3γ  and 4γ  requires the application of stochastic analysis so to 
get the cumulants needed. Monte Carlo simulation will be adopted to this aim, and the numerical 
and experimental results pertaining a cantilever beam under with noise Gaussian base motion are 
reported in the next section. 
 

4 NUMERICAL AND EXPERIMENTAL RESULTS 
In this section the results deriving from the analysis of the random vibration of the cantilever beam 
depicted in Figure 2 are shown. It has been assumed that the beam is subjected to a ground 
acceleration modeled by a white noise process with power spectral density 3 20.0031 /

guS m s=&& .  
The finite elements model and the pertinent mechanical and geometrical parameters are also 
reported in Figure 2. A joined experimental-numerical analysis has been conducted. First, the  
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Figure 2: Cantilever beam (a) and finite elements model (b) 

 
damping ratio and the first two natural frequencies have been determined leading to 1.1%ζ = , 

1 68.2Hzω = , and 2 427.4Hzω = , respectively. The numerical step-by step procedure proposed 
by Cacciola and Muscolino [7], adopting a time integration step 0.000488st∆ =  and duration 8s, 
has been used for the numerical analysis. For various crack depths and positions the random 
response of the beam has been investigated via a pertinent Monte Carlo study. The skewness 
coefficients 3γ  have been determined using eqns. (5) and (6). The results relative to the rotations 
of the joints are reported in Figure 3. It is observed that a distinct jump occurs in the rotation 
skewness, located at the position of the crack (shaded in gray in Figure 3). The analysis of the 
results clearly shows that the size of the jump is related to the crack depth.  
 To validate the proposed procedure experimental tests have been conducted. The study is still 
in progress and partial results are herein summarized. The experimental set-up is composed by an 
Unholtz-Dickie vibrating system (slip table and amplifier model TA250), Bruel&Kjaer model 
4382S accelerometers with Nexus amplifier and a National Instruments PCI-MIO 16XE10 board 
for driving the signal to the amplifier. The rotations have been measured using a couple of 
accelerometers distant 3cm each other. The crack depth is 0.5h and it is located in the middle of 
the beam. Changing the location of the accelerometers the random response have been measured in 
various points. Specifically, the time history of the rotations have been measured in two point 
located under and above the crack, respectively. The skewness and the probability density function 
of the rotations have been subsequently determined in a Monte Carlo fashion, exploiting the 
ergodicity of the response process. In Figure 4 the probability density function of the measured 
response is shown. Figure 4a confirm the Gaussianity of the input process, while the probability 
density functions of the rotations depicted in Figures 4b and 4c reveals the non Gaussianity of the 
response owed to the presence of the crack. Remarkably, the skewness coefficients of the rotations 
under and above the crack are respectively 3 0.0589γ =  and 3 0.3483γ = − , in agreement with the 
results from the finite element analysis.  
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Figure 3: Skewness coefficents for various crack depths and positions 
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Figure 4: probability density functions of the response process: a) displacement at restrain (input 
signal); b) rotation below the crack; c) rotation above the crack 
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