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ABSTRACT 

Stress Corrosion Cracking (SCC) is the process of brittle crack growth in a normally ductile material exposed to 
a combination of a corrosive environment and relatively low constant or intermittent stresses. There is a specific 
atomic level pathway of SCC for each material-environment system. At the same time, there is also a striking 
commonality of the phenomena in different material-environment systems, when the problem is considered on a 
continuum level. In this paper we present a mathematical model of SC individual crack growth. A process zone 
(PZ), occupied by crazing, shear banding and/or other forms of strain localizations, are commonly observed in 
front of a crack in engineering thermoplastics. The growth of the crack is strongly coupled with the evolution of 
PZ. Thus, it is convenient to consider a crack with PZ as one system referred to as “Crack Layer” (CL), i.e., a 
crack with finite, variable thickness. Crack Layer (CL) formalism is employed here modeling of slow stress 
corrosion crack growth. There are thermodynamic forces XC and XPZ associated with crack and PZ evolution 
respectively. The forces XC and XPZ are conventionally expressed as the derivative of Gibbs potential with 
respect to crack and PZ sizes, and are presented as the difference between the driving and resisting parts. The 
driving part of XC is the elastic energy release rate G1  due to crack extension into PZ. The resisting part of XC is 
the specific fracture energy 2γ of PZ material. The distinction of corrosive environment on CL is a reduction of 
the resisting part 2γ due to chemical degradation of PZ material. It leads to a noticeable acceleration of an 
average crack growth rate, reduction of the lifetime as well as a change in the slope in Paris-Erdogan plot of 
crack growth rate vs. stress intensity factor. A modification of CL formalism that accounts for the presence of 
aggressive environment and an algorithm for evaluation of stress corrosion CL (SCCL) growth is proposed in 
this work. Examples of numerical simulation of SCCL are also presented.  
 

1  INTRODUCTION 
Stress corrosion cracking (SCC) results from strongly coupled chemical and thermo-mechanical 
processes, and sensitive to material composition and morphology. We distinguish four stages of 
SCC: 1) microcracks initiation; 2) slow growth of individual cracks; 3) strong interaction of cracks 
and formation of clusters of cracks; and 4) clusters growth and instability. The initiation stage of 
SCC is associated with mechano-chemical degradation of polymer, where chemical degradation 
plays the leading role. It was recently modeled in (Choi et al [1]). 
A well-developed SC crack colony formed at the end of stage three of SCC in an accelerated testing 
of plastic pipe is illustrated in Figure 1 (Zhou et al [2]). An appearance of SC crack colony on the 

Figure 1: Schematics of cross sections and two micrographs of SC crack colony 
formed in an accelerated testing of a plastic pipe 
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two cross sections is depicted in two micrographs on the right side of Figure 1. The multiplicity of 
cracks emanating from a thin degraded layer of material, almost regular spacing between the 
individual cracks, and random distribution of crack depth are well reflected in the circumferential 
cross section. A thumbnail shape and a variation of sizes of the individual cracks are well visible on 
the axial cross section. A ragged front of thumbnail crack in the center of axial cross section 
illustrates fingering, a typical mechanism of progression of SCC by localized degradation of polymer 
in an immediate vicinity of the crack front. In the present work, the chemical degradation of 
polymers is characterized by a degradation parameter, )0(/)(1)( ww MtMt −=ω , which is directly 
proportional to the reduction of molecular weight,  (Niu et al [3]). wM
A typical time dependence of the degradation parameter on the dimensionless time OITtt /=τ  is 
depicted by solid line in Figure 2. Here  stands for oxidation induction time (OIT). k  is the rate 
of degradation parameter growth for the time interval 

OITt

*tttOIT ≤≤ , and is the time of complete 

degradation 
*t

1=ω , ( ). For the modeling purpose the degradation parameter evolution 
at a given point of material, 

1
*

−+= ktt OIT

x, is approximated as 
,   (1) 

where is a Heaviside step function. The approximation of eq. (1) is 

indicated by the doted line on Figure 2.  
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2  MODELING OF SC CRACK GROWTH 

Crack growth in engineering thermoplastics is usually preceded by a process zone (PZ), a zone of 
highly localized large deformation in a vicinity of crack front. Depending on loading, material and 
environment, PZ may consist of crazing, shear banding, voiding, microcracking etc. The crack 
growth and an evolution of PZ are closely coupled irreversible processes. The thermodynamic force 
(TF) responsible for PZ evolution is defined as the variational derivative of Gibbs potential with 
respect to an infinitesimal displacement vector iXδ  of PZ boundary PZV∂  (Chudnovsky [4]). 
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Here,  and  stand for the energy momentum tensors (EMT) for the material outside of PZ and 

PZ material respectively, and  designates the PZ domain. In high and medium density 
polyethylenes, PZ is observed as a narrow strip of crazed (cold drawn) material as shown in Figure 4 
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Figure 3: A micrograph and schematics of 
process zone in PE in front of crack
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(Lu et al [5], Showaib and Moet [6], Stojimirovic et al [7], Kadota [8]). In such a case the PZ 
evolution is uniquely determined by the movement (in material coordinates) of PZ front (a tip of PZ 
cross section shown in Figure 4), and the thermodynamic force (2) for PZ evolution is reduced to 

c
PZPZ JX γ−= 11 , where, ,      (3) ∫

Γ

Γ=
1

11 dnPJ jj
PZ

where the driving part of TF, the energy release rate (ERR) due to PZ front movement in plain strain 
problem is expressed in terms a path invariant contour integral outside of PZ of EMT,. The resisting 
part of TF, cγ , stands for specific energy of crazing (SEC) that includes cavitation energy, as a major 
part. Similarly, the thermodynamic force for crack growth is defined as the derivative of Gibbs free 
energy with respect to crack front movement. 
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where,  is an arbitrary contour within a homogeneous PZ (0Γ 0Γ  dose not cross PZ boundary ), 
and 

PZV∂
γ2  is the specific fracture energy (SFE) of the PZ material. SFE usually decays with time due to 

material aging (e.g. creep). This process is highly accelerated by chemical degradation of polymer. 
Thus, SFE at each point x and time instance t is a function of degree of degradation ),( txω  and the 

creep strain  or time )(tpε t . The existence of PZ significantly reduces the driving part of CRX  by 
providing stress shielding. The resistance to crack growth is determined by SFE of PZ material and 
the rate of its decay with creep and degradation. The kinetic equations for the crack and PZ growth 
follow conventional relations between thermodynamic forces and corresponding fluxes 
(Chudnovsky et al [5], Chudnovsky [9]) 
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There are two types of solution of (5), which describe the continuous and discontinuous (stepwise) 
CL growth. According to the experiment data, the crack and PZ in PEs grow in a stepwise manner. It 
means zero crack growth rate and nonpositive thermodynamic force XCR for most of the time, i.e. 

( )( )
ax

CR tttxJ
=

≤ ),(,,21 εωγ  (see eq. (4) and the first eq. of (5)). However, with progression of 

degradation, i.e., an increase of ω and εp, γ decreases. As an example, Figure 4 shows the decay of 
SFE of polybutylene (PB) due to chemical degradation (Niu et al [3]). In general, the SFE decays in 
one way (by creep, for instance) prior to the beginning of chemical degradation, and by another way, 
when the chemical degradation is in action. It can be expressed as follows: 

OIT

OIT
np

m

p
m

ttfor
ttfor

tttx
>
<

⎪⎩

⎪
⎨
⎧

−−+
=

1)1()(
)()),(),,((

0 ωγεγ
εγεωγ ,                                 (6) 

and the mechanical degradation due to creep, , ))/(1/()( 0
αγεγ c

p
m tt−= 0γ , (a characteristic 

time scale) and 
ct

α  are constants. Figure 5 present the normalized SFE decay due to creep and 
chemical degradation in normalized time . The solid line in Figure 5 depicts SFE decay due to 
creep for . For , the chemical degradation takes over, since it progresses much faster. 
The SFE decay due to chemical degradation is shown by doted line. It is also assumed that the rate 
SFE reduction due to chemical degradation does not depend on the SFE reduction by the creep. Thus, 
for a given external load and fixed CL geometry, the thermodynamic force, 

OITtt /

OITtt ≤ OITtt >

CRX , increases and 
becomes positive with time due to the decay of SFE.  corresponds to unstable crack 0=CRX
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equilibrium, which is the starting point for crack growth inside PZ. There is a corresponding critical 
value  of degradation parameter *ω ω , which is calculated from eq. (4) and (6) for time :  OITtt >

np
maJ
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Finally, the total time of building up the critical level of degradation, , can be obtained using 
equations (1) and (7). For the example of a single edge notch (SEN) specimen and a given external 
load considered below,  increases with crack length. Therefore, the critical level of degradation 

decreases with an increase of crack length, and thus it shortens the duration of stationary crack 
configuration. It is illustrated in Figure 5, by three levels of ERR,  corresponding to three 
different crack sizes, ,  and  indicated. The crack starts to grow, when SFE 

*ω

CRJ1
*ω

CRJ1

1a 2a 3a γ2  decays to the 

level of the current . It determines the duration of the stationary crack configuration. Apparently, 

this duration  decreases with increase of the crack size, i.e., an increase of . Since the 

resisting part of 

CRJ1

)(at∆ CRJ1
CRX is reduced by degradation of PZ material, the crack, when it starts to grow, 

propagates relatively fast to the end of PZ according to the first equation of (5). Then it gets arrested 
due to high SFE, γ0, of undegraded, fresh material outside of PZ. Thus, the increment of crack length 
∆a is controlled by the size of PZ at the time, when crack starts to grow inside of PZ. It happened at 
the end of the stationary stage of the discontinuous CL growth, during which both the crack and PZ 
thermodynamic forces are negative and both rates of the crack and PZ growth, according to (5) equal 
0. The equilibrium size of PZ is determined by condition of vanishing ( = 0). Since 

for the narrow strip, , the equation for PZ size can be written as: 
c

PZPZ JX γ−= 11

EKJ totPZ /)( 2
1 =

0)( 2 =− c
tot EK γ ,        (8) 

where the total stress intensity factor (SIF) totK  is the difference between SIF at the PZ tip due 
to externally applied load and SIF at PZ tip due to drawing stresses acting along PZ boundary:  

∞K

dK

d
tot KKK −= ∞          (9) 

E in (8) stands for the Young’s modulus for plain strain problem, and γc is SEC introduced in (3). 
According to our previous study (Kadota at al [8]), SEC in PEs is related to the thickness of the layer 
of original material, which is transformed into craze, i.e., undergoes cavitations followed by cold 
drawing. This thickness is proportional to the crack opening displacement (COD) δ  at the root of 
PZ with the coefficient of proportionality , where 1)1( −−λ λ  is the natural draw ratio. COD is 
computed for CL with the cutoff of the craze domain VPZ and substitution of craze material by 
traction along the boundary ∂VPZ. Based on our previous analysis of the equilibrium PZ size, a power 
type relation between SEC cγ  and CODδ  is assumed as , andb

cc δγγ 0= 0cγ  and b  are constants. 
The driving part of the PZ thermodynamic force increases with crack movement inside PZ and 
reaches maximum value, when crack reaches the tip of PZ. Apparently, at a certain point it triggers 
PZ growth, following the second of (5). However, with an increase of PZ size, the thermodynamic 
force of PZ decreases and PZ reaches an equilibrium state, . It completes one step of the 
discontinuous CL growth. This process is repeated until the final instability, ≥ γ

0=PZX
CRJ1 0.  

There is a following computational procedure of the proposed model. Starting from the initial crack 
size  we compute PZ thermodynamic force, according to (3), and PZ size growth according to the 
second equation of system (5). The equilibrium PZ size for a given crack length  and external load 

0a

0a
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follows from equation (8). It determines the first stationary configuration of CL. The duration of CL 
stationary state is determined by the reduction of SFE γ given by (6) and depicted in Figure 5, and 
critical level of degradation (7). Then the crack grows inside PZ according to the first equation of 
system (5) until it reaches the tip of PZ and stops there. Then, the above computations are repeated 
again for the new crack length +∆a, and for the following steps of the discontinuous CL growth 

until  reach the initial value of SFE 
0a

CRJ1 0γ . There is a transition at that point from discontinuous to 
a continuous CL growth, which corresponds to the solution of the system (5) with always-positive 
thermodynamic forces CRX  and PZX .  An average crack growth rate during the step-wise CL 
growth is defined as the ratio of the equilibrium PZ size and the duration of the corresponding 
stationary configuration. 
 

3. ILLUSTRATIVE EXAMPLES 
The major factors determining the rate of SC crack propagation and the severity of SCC in general 
are stress concentration, creep and chemical degradation of PZ material. Here we consider 
applications of the outlined above model of SC crack growth to pipe grade PE. The numerical 
simulation of SC crack growth is performed for SEN specimen, of 10 mm width with the initial 
crack size of 0.5 mm.  The Young’s modulus , drawing stress E drσ , is the normalized value, SFE 

0γ  over cavitation energy 0cγ of the model material ( 00 / cγγ ) are selected as , , 
and 1. Three levels of applied stresses, 

GPa2.2 MPa20

∞σ  are considered, 0.3 drσ , 0.4 drσ , and 0.5 drσ , and the 
rate of degradation, k , is considered as a variable parameter. Figure 6 represents numerical 
simulations of CL growth according to the system of equations (6) and displays the crack and CL 
lengths (vertical axes) vs. time. We consider two scenarios of CL growth: one with SFE decay due to 
creep only, and another one is SCC, i.e., SFE decay caused by a combination of creep and chemical 
degradation. Apparently, the lifetime of SCC is noticeably shorter than that for mechanically (creep) 
driven crack. There is also smaller number and shorter duration of individual steps in SCC in 
comparison with that for creep driven crack. The same time the critical CL configuration at the 
transition point from discontinuous, step-wise growth to continuous (much faster) propagation is the 
same for both cases. It is common in crack growth analysis to express the crack growth rate in terms 
of SIF (Hertzberg and Manson (16)). Figure 7, displays the relationship between crack growth rate 

 and SIFdtda / ), ∞( σaKI

/  f in
 

 for SCC with various OIT as well as for mechanically driven crack. In 
case of mechanically driven crack, the results of numerical simulation agree very well with empirical 
Paris-Erdogan power equation (a linear relation in log ~ log scale). However, there is a different slop 
in ~  relations and noticeably higher values of da or the same IK  case of 
SCC. These differences decrease with increase of SIF K and completely disappear at a certain 
level of SIF. After that point, the crack growth rates of mechanically driven crack and SC crack are 

)/log( dtda )log( IK dt  

I

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 s
pe

ci
fic

 fr
ac

tu
re

 e
ne

rg
y,

 γ
/γ

0

Degradation parameter, ω

0.0

0.5

1.0
γ/γ

0
 decay due to

chemical degradation

γ/γ
0
 by superposition

OIT ∆t
2

∆t
1∆t

3

J
2
(σ,a)/γ

0

J
1
(σ,a)/γ

0

J
3
(σ,a)/γ

0

γ/γ
0
 decay due to creep

1.0

N
or

m
al

iz
ed

 s
pe

ci
fic

 fr
ac

ru
te

 e
ne

rg
y,

 γ
/γ 0

Normalized time, t/tOIT

Figure 4: Decay of specific fracture energy 
with chemical degradation parameter
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almost same. It is also clear from Figure 7 that OIT affects noticeably the SC crack growth rate: 
reduction of OIT increases the average crack growth rate. An analysis of the effect of the rate of 
chemical degradation k (see Figure 2) on the rate of SCC has been also performed, but the effect of 

 is found to be much weaker than that of OIT: Both, the average crack growth rate and the duration 
of stable SC crack growth are not sensitive to the rate of chemical degradation, k , but highly 
dependent on OIT. 

k

 
4  CONCLUSION 

In this paper, formalism for quantitative modeling of SCC is developed. Stress corrosion crack 
growth is modeled by a system of highly nonlinear ordinary differential equations that calls for 
numerical solution. Numerical simulation and comparative analysis of stress corrosion crack growth 
with mechanically (creep) driven crack are performed. There is a step-wise crack growth pattern in 
both cases. However, there is a smaller number of steps and shorter duration of each step in SCC. 
There is also a higher average crack growth rate and shorter lifetime in stress corrosion cracking in 
comparison with that for mechanically driven crack. The numerical simulation of crack layer growth 
also reconstructs Paris–Erdogan equation for crack growth rate as a function of SIF. A parametric 
analysis suggests that the crack growth rate as well as the lifetime strongly depend on the oxidation 
induction time and is insensitive to the rate of chemical degradation after depletion of polymer 
stabilizing package. The proposed formalism and numerical simulation may serve as the foundation 
of an accelerated testing for SCC.  
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