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ABSTRACT 

In this paper, the problem of the dynamic growth of a single spheroidal void in a power 
law visco-plastic matrix material has been studied and a new void growth model which 
is capable of describing the deformation and fracture of ductile materials under dynamic 
loading conditions is presented. Particular attention is paid to inertial effect, rate-
sensitivity effect and void shape.  
 

1. INTRODUCTION 
Microvoid nucleation, growth and coalescence are the dominating mechanisms 
of ductile fracture. For static loading, void growth problems have been studied 
by McClintock [12] and Rice and Tracey [2]. Gurson [6] extended the void 
growth model by Rice and Tracey into a pressure dependent constitutive 
equation where not only the void growth but also the effect of void growth on 
the plastic flow of a porous material has been taken into consideration. 
Modifications to bring the Gurson model to realistic predictions have been 
made by Needleman and Tvergaard [11]. Zhang et al. [8] have studied the 
microvoid coalescence problem and found that the plastic limit load model by 
Thomason [10] works very well as a coalescence criterion for the Gurson 
model. A so-called complete Gurson model where no empirical critical void 
volume fraction at void coalescence is needed has been introduced by Zhang et 
al. [9]. 
     With the successful application of ductile fracture models, the need for 
dynamic ductile fracture models capable of describing deformation and fracture 
of structures under dynamic loading conditions has been steadily increasing, 
especially in the last ten years when fracture mechanics was introduced into the 
auto industry. Although a large body of work exists on quasi-static microvoid 
growth, void growth under dynamic loading has drawn relatively modest 
attention since the pioneering work of Carroll and Holt [7]. The effect of 
dynamic loading on the void growth naturally involves three aspects: thermal 
effect, strain-rate sensitivity and inertia effect. Various studies have shown 
(Tong and Ravichandran, Cortes) that in most cases the thermal effect is less 
significant compared with the effect of inertia and strain-rate sensitivity. 
     In this paper we focus the problem of dynamic growth of a single spheroidal 
void in a power law visco-plastic cell element, which has a confocal spheroidal 
shape. Particular attention is paid to inertial effect, rate-sensitivity effect and 
void shape.  
 

2. REPRESENTATIVE VOLUME ELEMENT AND MATERIAL 
PROPERTIES 

In this study, a spheroidal (axisymmetric) cavity with semi-axes a (along x3) 
and b (along x1 and x2), embedded in a confocal spheroidal representative 
volume element with semi-axes A (along x3) and B (along x1 and x2) has been 
considered, Figure 1. 
     In the representative volume element, 1 1

2 2 2 22 2c a b A B≡ − ≡ − , 

denotes the focal distance, 
1e  and 

2e  the eccentricities of the inner and outer 

spheroids, 
1 2,e c a e c A= = . The following two geometrical parameters 

have been used, the void volume fraction 22 / ABabf =  and void aspect ratio 
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baw /= . The inner and outer eccentricities can be calculated in terms of 
these parameters. Here we only consider the case with prolate void ( A B≥ ). 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: The representative volume element model 
 
 

     In orthogonal spheroidal coordinates, the iso - λ  surfaces are confocal 
spheroids with semi-axes and eccentricity denoted a, b and e respectively: 
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     In particular, the surface of the void and the external boundary are iso- λ  
surfaces corresponding to some value 1λ  and 2λ  respectively. The nonzero 
metric coefficients for this system of coordinates are given by (Moon and 
Spencer [13]): 
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     The expression of the elementary volume in spheroidal coordinate is: 
 

( )3 2 2

v S i n h S i n

S i n h S i n h S i n h S i n h

d c g d d d

c d d d
λ λλ θ λ θ ϕ

λ θ λ θ λ θ ϕ

=

= +
                          (3)  

 
     Throughout the analysis, we assume that the matrix surrounding the void 
responds to monotonic stressing as a visco-plastic solid with flow rule: 
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where, 

i jσ  is the stress tensor, 
i js  the deviatoric stresses tensor, 

i jd  is the rate 

of deformation tensor, 
eσ  and 

eε  the effective Mises stress and strain, 

respectively, 
0σ  is a flow stress, and 

0ε�  are material constants, N is the rate 

sensitivity parameter, N � 1.  
     The macroscopic rate of deformation of the representative volume element 
is defined in terms of the velocity field, v, on the surface of the cell element, 
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where V is the volume of the cell element, S is its outer surface and n is the unit 
outward normal on S. The average rate of work :� d  of the cell element is 

defined as: 
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     Using the principle of virtual work and neglecting the body forces, the 
above equation becomes 
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     Following Molinari and Mercier [5] and using the definition of the dynamic 
macroscopic stress i

i j i j j

d v
x

d t
σ ρΣ = + , where � is mass density, the 

relation between the microscopic and macroscopic stresses of the volume 
element model reads, 
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     The macroscopic plastic dissipation ( )Φ D  is defined by 
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     For any velocity field, v, satisfying conditions of homogenous boundary 
strain rate D, one can computer the overall dissipation ( )Φ D  corresponding 

to the velocity field considered through numerical integration over the volume 
V. When ( )Φ D  

is obtained, the macroscopic yield locus can be obtained by 

the equation ( )∂ Φ=
∂

� D
D

. 

  
3. VELOCITY FIELD 

Following Gåråjeu [3], the homogenous strain rate tensor D on the outside 
surface of the cell element has the following form 
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     A two-trail velocity field has been tried in current study.  
 

( ) ( )1 2= +v v v                                                                                                 (11) 
 
Where both ( )1v and ( )2v  are incompressible fields, ( )1v  satisfies a condition 
of homogeneous boundary strain rate on the outer surface of the cell element 
with a strain rate tensor T as follow, 
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and ( )2v  corresponds to a homogeneous strain on the entire domain, as follow 
 

( ) ( )2 = − ⋅v D T x                                                                                           (13) 

 
where 
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     Different to Gologau’s [4] expansion velocity field, this velocity field v only 
satisfies the homogenous strain rate boundary condition on the outside surface 
of the cell element.  
     This velocity field will reduce to the classical incompressible expansion 
field used by Gurson in the spherical and cylindrical cases when the ellipsoid 
shape becomes spherical or cylindrical respectively. 
 

4. A DYNAMIC VOID GROWTH MODEL 
Based on eqn (8), the plastic dissipation function can be written as a summation 
of a quasi-static and a dynamic part: 
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     Using the field eqn (11) in eqn (15) and transforming to spheroidal 
coordinates, we obtain 
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where eε�  is a function of velocity field v. Following Gåråjeu’s work, the 
estimate of the volume average in eqn (16) reads (Gåråjeu [3]): 
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where ξ  and ξ  are two constants, as follows: 
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     After a lengthy derivation with the help of Mathematica program the 
dynamic plastic potential function can be written: 
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Where FDi (i=1, 2, 3, 5, 41, 42, 61, 62) are analytical functions of eccentricities 
of the inner and outer spheroids, e1 and e2 (Liu, [1]). 
     Assuming the void remains spheroidal during the deformation, when the 
velocity field v is specialized to eqn (11), we obtain the following differential 
equation: 
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     With the same procedure, we obtain the evolution equation of parameter a 
as follow: 
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     Based on the incompressibility of the matrix material, the evolution equation 
of void volume fraction can be derived as follow: 
 

( ) ( )1f f T r= − D�                                                                                        (25) 

 
5. DISCUSSIONS AND CONCLUSIONS 

The void growth model is compared with the FEM results (Liu, [1]). An 
example is shown in figure 2. The agreement of the present model with FEM 
results is quite satisfactory on a wide range of strain rate except that the 
evolution of void shape can not be predicted precisely.  
     Compared to other models in the literature, this model not only included the 
strain rate sensitivity and void shape effect as in some previous work, but also 
included quantitative terms for inertial effect which related with the void shape 
and size.  
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Figure 2. Comparison with FEM results. f0=0.002, e1=0.6, D11=-300 (1/s), 

D33=900 (1/s). st: static calculation; dyn: dynamic calculation. 
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