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ABSTRACT 

The fracture toughness of ductile materials depends upon the ability of the material to resist the growth of 
microscale voids near a crack tip. Mechanics analyses of the elastic-plastic deformation state around such 
voids typically assume the surrounding material to be isotropic. However at the microscale, voids exist 
predominantly within single grains of a polycrystalline material, so it is necessary to account for the 
anisotropic nature of the surrounding material. Therefore anisotropic slip line theory is employed herein to 
derive the stress and deformation state around a cylindrical void in a single crystal oriented such that plane 
strain conditions are admitted from three effective in-plane slip systems. The deformation state takes the form 
of angular sectors around the circumference of the void.  Only one of the three effective slip systems is active 
within each sector. Each slip sector is further subdivided into smaller sectors within which the stress state is 
derived. The theory predicts a highly heterogeneous stress and deformation state. Theoretical results will be 
presented for voids in both face centered cubic and body centered cubic crystals. Experiments and single 
crystal plasticity finite element simulations of cylindrical voids in single crystals are also discussed. It is 
shown that the in-plane pressure necessary to activate plastic deformation around a cylindrical void in an 
anisotropic material is significantly higher than that necessary in an isotropic material, which may have 
important implications when modeling the ductile fracture process. 

 
1  INTRODUCTION 

Fracture in ductile crystalline materials occurs via a process of void nucleation, growth and 
coalescence. Typically the voids, which are approximately spherical, nucleate from second-phase 
particles present in the material near a crack tip. The voids then grow under the influence of high 
stresses in the near crack tip region.  Once the diameter of the voids has increased to a sufficiently 
large size, they coalesce either with the nearby crack tip or with neighboring voids. The microscale 
voids often are sufficiently small so that they exist entirely within a single grain of the 
polycrystalline material. Therefore it is important to account for the anisotropic constitutive 
properties of each individual grain to better understand void growth at the micron length scale. 

An extensive literature on void growth in isotropic materials exists beginning with slip line 
theory solutions (e.g. [1]) and also elastic-plastic analyses for both cylindrical and spherical 
materials [2,3,4]. Very little work has been done to understand the effects of anisotropy on void 
growth. Numerical simulations of void growth in single crystals suggest that plastic anisotropy 
affects the growth of individual voids [5] by inducing non-axisymmetric displacement and stress 
fields. In addition, numerical simulations of the coalescence of neighboring voids in a crystal [6] 
show a pronounced dependence upon the crystallographic orientation of the void-containing 
material. 

The stress and deformation fields around a cylindrical void in both face centered cubic and 
body centered cubic materials are presented herein. The solutions are developed by employing 
anisotropic slip line theory [7,8] which is valid for rigid-ideally plastic single crystals under plane 
strain conditions. The deformation state is divided into angular regions, called slip sectors, within 
which only one effective dislocation slip system is active. Each slip sector is further subdivided 
into smaller regions denominated stress sectors within which mathematical expressions for the 
prevailing stress state are valid. Complete details of the derivation for a void in a face centered 



cubic material are presented in [9]. The derivation for a void in a body centered cubic material is 
similar. The analytical theory, experiments and finite element simulations all compare favorably. 

 
2  GOVERNING EQUATIONS AND GEOMETRY OF VOID 

Single crystals which deform plastically are clearly anisotropic in their behavior, which arises 
from the fact that plastic deformation occurs by the motion of dislocations within the crystal on 
discrete slip systems. The slip system of a dislocation is determined by the crystallographic plane 
(with unit normal n) on which the dislocation exists as well as the direction of slip which the 
dislocation induces in the crystal (denoted by unit vector s). The slip system is activated when the 
shear stress resolved onto the slip system in the direction of slip reaches a critical value, which is 
expressed mathematically for each system as τσ ±=⋅⋅ sn , where τ  is the experimentally 
determined critical resolved shear stress of the slip system and σ  is the stress tensor. 

If a line loading is applied parallel to a >< 110  direction in a 
face-centered cubic (FCC) or body-centered cubic (BCC) crystal, 
certain slip systems act cooperatively which enable plane strain 
conditions to be achieved. This is illustrated for FCC crystals in 
Figure 1a where the }111{  planes are shaded in gray and can be seen 

relative to the wire frame which corresponds to the external surfaces 
of the crystal; intersections of the }111{  planes correspond to 

>< 110  directions, which define the slip systems for FCC crystals. 
A line loading applied parallel to the ]110[  direction in Figure 1a 

produces a plane strain deformation state in the ]001[]101[ −  plane 
in Figure 1b made possible by three effective in-plane slip systems in 
the crystal. The effective plane strain slip systems consist of two slip 
systems which act cooperatively to achieve plastic slip only within 
the desired plane. The effective ]121)[111(  slip system, which will 
be referred to as slip system i, is oriented at an in-plane angle of 

o7.542tan 1
1 ≈= −φ  counterclockwise relative to ]101[  direction. 

The complex slip system acts in the ]101[  direction, such that 
02 =φ , and will be referred to as slip system ii. The effective 

]211)[111(  slip system is oriented at an in-plane angle of 
o7.542tan 1

1 −≈−= −φ  relative to the ]101[  direction and will be 
referred to as slip system iii. The yield condition for each of the plane strain slip systems has a 
geometrical interpretation in the form of the yield surface in Figure 1c, which can be expressed 
mathematically as 
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where β  is a dimensionless term which relates the details of a slip system to the plane of plane 

strain [10] and for FCC crystals has values 3231 == ββ  and 32 =β . The appropriate sign 

for β  depends upon whether the slip system is activated in a positive or a negative sense. For 

what follows, we will assume that τ  is unity. The values of β  for BCC crystals are different from 

the FCC case which leads to somewhat different stress and deformation fields. 
If eqn (1) is expressed in the polar coordinates ),( θr , the yield condition can be rewritten 

Figure 1: Geometry 
for FCC crystal 
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Airy’s stress function, Ψ , in polar coordinates can then be substituted into eqn (2) to obtain 
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which simultaneously satisfies equilibrium and the yield condition. It is a non-linear partial 
differential equation which is hyperbolic over it entire domain. Slip line plasticity theory satisfies 
equilibrium and the yield condition in a rigid-ideally plastic material undergoing plane strain 
deformation, while neglecting compatibility and the strain-displacement relations, so eqn (3) is an 
expression for slip line theory in a single crystal. The general slip line theory for an anisotropic 
material is well-developed [7,8] and will be used along with eqn (3) to derive the displacement and 
stress fields around the void.  

 
3  BOUNDARY CONDITIONS AND ESTABLISHMENT OF SLIP SECTORS 

Slip line theory addresses incipient plastic deformation so that boundary conditions can be applied 
to the material in its undeformed configuration. We assume that plastic deformation around the 
void is induced by a far-field loading and that zero traction boundary conditions hold on the void 
surface at 0rr =  so that 0== θσσ rrr . Further, as is required by slip line theory, we assume that 
the material is plastically deforming over the entire domain of interest.  Therefore from eqn (2) the 
circumferential stress on the surface of the void is  

 ( )[ ] ( )[ ]θφθφ
βτσθθ −

=
−

±=
2sin

2

2sin

2 A
 (4) 

where βτ±=A  and subscripts on A  and φ  will be used to designate particular slip systems. 

In order to evaluate θθσ  it is necessary to know which slip 
system is active. This can be determined from the geometry of the 
problem as in Figure 1b, where is evident that the zero traction 
boundary conditions at the point where the x1-axis intersects the void 
surface require that 01211 == σσ  so the stress state lies on the 
abscissa of the yield surface. We will assume a compressive far-field 
stress state which implies that 0<θθσ  at this point. Therefore the 
stress state must be at point F on the yield surface in Figure 1c so 
that both slip system i and slip system iii are active where the x1-axis 
intersects the void surface. If we now apply the same logic to Figure 
2a where the x1-axis has been rotated counterclockwise relative to 
the crystallographic coordinate system, the zero traction boundary 
conditions require the stress state to lie somewhere between points F 
and A on the yield surface of Figure 2b. Therefore, single slip on slip 
system i is predicted where the x1-axis intersects the void surface. 
When the x1-axis rotates sufficiently so that the point A lies on the 
abscissa of the yield surface, the active slip system changes from i to 
ii. For the FCC crystal, this occurs when the x1-axis rotates 

counterclockwise ( ) o3.3521tan 1 ≈= −γ . As the x1-axis continues 
to rotate, another transition from slip system ii to slip system iii occurs when the x1-axis has 

rotated counterclockwise ( ) o7.542tan 1
1 ≈= −φ . Slip system iii is active until the x1-axis has 

Figure 2: Rotated 
yield surface for FCC 
crystals 



rotated counterclockwise by 2π , whereupon the deformation changes back to slip system i, and 
so on around.  

Therefore, the deformation fields around the 
cylindrical void takes the form of angular sectors 
called slip sectors. Single slip conditions hold within 
each slip sector. The active slip systems on the void 
surface are illustrated in Figure 3, which also shows 
the profiles of the sector boundaries as they extend 
away from the void surface. The sector boundaries 
which are parallel and perpendicular to slip system ii 
are, by virtue of symmetry, radial lines with respect 
to the void. We can not make any statement yet about 
the shape of the other sector boundaries, which can 
be derived using anisotropic slip line theory, other 
than that they initiate at well-defined angles on the 
void surface. We will assume tentatively that the 
sector boundaries (which are regions of double slip) 
are vanishingly thin.  

The slip sectors around a cylindrical void in a 
BCC crystal are different in two main ways. The 
angles at which the curved sector boundaries 
intersect the void surface are different from that of 
the FCC crystal. This leads to a slightly different shape of the curved sector boundaries.  

 
4  ESTABLISHMENT OF STRESS SECTORS 

Boundary conditions associated with hyperbolic partial differential equations often have only 
limited influence within the 
domain of a problem. 
Therefore, the region 
around the void must be 
broken into smaller sectors 
which are influenced by the 
zero traction boundary 
conditions. It can be shown 
that sectors I and II of 
Figure 4 are the only two 
regions around the void 
surface in which the stress 
state is determined solely by 
the zero traction boundary 
conditions. It is possible to 
find the solution for the 
Airy’s stress function of eqn 
(3) for stress sectors I, II and 
III in Figure 4. The stresses in the remaining sectors are found by recourse to various symmetry 
boundary conditions. The curved line bi in Figure 4 is the curved boundary between slip sector i 
and slip sector ii in the first quadrant of the void in Figure 3.  The stresses in other quadrants 
around the void can be determined from symmetry.  

Figure 3: Slip sectors around void 
in FCC single crystal 

Figure 4: Stress sectors around a void in FCC crystal. 



5  STRESSES AROUND VOID 
Three effective slip systems exist in the 
plane strain crystal, so there are six radial 
lines parallel to the slip systems which 
emanate from the center of the void as in 
Figure 1b; these will be referred to as 
radial slip systems. It is interesting to note 
that of the twelve slip sector boundaries 
around the circumference of the void, six 
of them intersect the void surface along a 
slip direction of one of the radial slip 
systems, and the other six intersect the 
void along a surface normal of one of the 
radial slip systems. The radial stresses, 

rrσ , in Figure 5 exhibit a 12-point “star” 
structure, where each point reflects a slip 
sector boundary. Therefore the stress 
distribution around the void shows a clear 
dependence on the slip sectors and stress 
sectors. The circumferential stress, θθσ , 
distribution is also influenced by the slip 
sector boundaries, but not as much as rrσ . 

The polar shear stress , θσ r , distribution 
exhibits a very complex nature within the 
confines of the crystal symmetries. It is 
interesting to note that the stresses around 
the void are continuous, however there are 
discontinuities of the stress gradient 
across the stress sector boundaries. 

It is interesting to compare the in-
plane pressure, defined as 

( ) 2θθσσσ += rr , necessary to activate 

plastic deformation around a void in an anisotropic material with that necessary for an isotropic 
material. For FCC crystals, at 2.10 =rr  the value is τσ 04.2−=mean  and at 6.10 =rr  the value is 

τσ 85.2−=mean . The in-plane pressure necessary to activate plastic deformation around a 

cylindrical void in an isotropic rigid-ideally plastic material (e.g. [1]) at 2.10 =rr  is 

τσ 36.1−=mean  and at 6.10 =rr  the value is τσ 94.1−=mean . Thus it is evident that a significantly 
larger mean pressure is required to achieve plastic deformation and growth of a void in an 
anisotropic material than in an isotropic material. This may have important implications when 
using concepts of void nucleation, growth and coalescence to model crack growth in ductile 
metals. 
 

6  CONCLUSIONS 
The anisotropic slip line theory solution was derived for a cylindrical void within FCC and BCC 
crystals. The governing non-linear hyperbolic partial differential equation in polar coordinates 
which satisfies equilibrium and constitutive relations appropriate for rigid-ideally plastic behavior 

Figure 5: Polar stresses in FCC crystal 



in a single crystal under plane strain conditions was derived in the form of an Airy's stress 
function. The associated characteristic lines of the governing equation were determined using the 
formalism of anisotropic slip line theory. Zero traction boundary conditions on the void surface 
require that the deformation fields take the form of angular sectors around the circumference of the 
void, within which only a single effective plane strain slip system is active. Within each sector of 
single slip, the domain is broken into smaller regions denominated stress sectors for which the 
stress state can be derived. The stresses are continuous around the void, however the stress 
gradients are discontinuous across the stress sector boundaries. The mean in-plane pressure 
necessary to activate plastic deformation around a void in an anisotropic material is significantly 
higher than that necessary for an isotropic material, which suggests that it is important to account 
for the anisotropy when modeling void growth and coalescence during ductile fracture. Full details 
of the derivation for the FCC crystal are given in [9]. 
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