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ABSTRACT 

Dynamic ruptures on frictional interfaces propagate as dynamic frictional shear cracks with well-defined 
rupture fronts and rupture velocities comparable to the wave speeds of the surrounding elastic media.  On a 
frictional interface, the faces of the shear crack behind the rupture front are not traction-free and, in general, 
slide past each other as prescribed by the imposed friction law.  In this study, laboratory-derived nonlinear 
rate and state friction laws are considered in which the frictional strength (or resistance) of the interface 
depends on the local sliding rate (or relative particle velocity) V and a state variable.  The state variable 
incorporates dependence on the history of slip and describes the evolving properties of the microscopic 
contacts on the interface.   
     Zheng and Rice [1] showed that if an interface between two identical elastic half-spaces is described by 
these laws of steady-state rate-weakening type, the dynamic rupture can proceed in two ways: as the so-called 
crack-like mode or pulse-like mode.  In the crack-like mode, the slip duration at the points on the interface is 
comparable to the duration of the dynamic rupture itself.  In the pulse-like mode, the points slip for a much 
shorter time and then dynamically heal, so that the resulting mode resembles a wrinkle (in a shear sense) 
propagating along the interface.  The rupture mode is determined by two factors: How high the interface 
shear stress is before the dynamic rupture and how strong the rate weakening is (Zheng and Rice [1]).   
     We find that there is another possibility, the multi-pulse mode, in which there are several pulses of slip 
propagating along the interface (Lapusta and Rice [2]).  These multiple pulses occur in our simulations of 
dynamic ruptures in a two-dimensional anti-plane problem.  The rupture starts in the crack-like mode but then 
the sliding behind the rupture front destabilizes with a wave-like pattern which grows into separated pulses of 
slip.  The multiple pulses and their nucleation are well-resolved numerically, both in time and in space, and 
are reproducible in simulations with higher resolution.  They are present only when the rate and state 
formulation incorporates sufficiently strong rate weakening so that the steady-state frictional resistance varies 
approximately as 1/V at high sliding rates V.  For the logarithmic rate dependence of the traditional Dieterich-
Ruina laws, only the crack-like mode results.  The new multi-pulse mode is consistent with the classification 
of Zheng and Rice [1] and fits in the transitional regime between the crack-like and pulse-like modes. 
     The origin of these multiple pulses and their spacing can be explained by the linearized stability analysis 
of the steady elastodynamic sliding to Fourier mode perturbation.  The analysis shows that there is the critical 
wavelength such that perturbations with shorter wavelengths decay and perturbations with longer 
wavelengths grow (Rice et al. [3]).  We study the behavior of the growing wavelengths and find that there is a 
wavelength with the maximum growth rate (i.e., the perturbation with that wavelength grows the fastest).  
This is exactly the wavelength that we see during the nucleation of the multiple pulses behind the rupture 
front.  The growth rate of that wavelength strongly depends on the amount of rate weakening in the friction 
law.  The multiple pulses appear during the life-time of the dynamic rupture only if this growth rate is high 
enough.  That is why we see multiple pulses only in the cases with strong rate weakening. 
 

1  INTRODUCTION 
Dynamic behavior of frictional interfaces is an important and challenging problem in both 
engineering and geophysical applications.  Parts of frictionally held structural interfaces (in ship 
hulls, fiber-reinforced composites etc.) can fail under dynamic loading and the details of the 
resulting dynamic rupture may determine whether the structure or its components will fail.  



Earthquakes propagate in the Earth’s crust as dynamic frictional shear cracks and the resulting 
ground motion depends on the details of the dynamic rupture and, in particular, on its mode.  
Dynamic frictional sliding is also important in other problems such as machine cutting. 
     This study considers propagation of dynamic ruptures on a planar frictional interface between 
two identical elastic half-spaces.  The interface is governed by the laboratory-derived rate and state 
friction laws which are presented in section 2.  An interesting and important problem is how the 
frictional sliding behind the rupture front proceeds.  Points on the interface may continue sliding 
as long as the sliding region keeps expanding.  Such a mode of sliding is called crack-like.  In this 
case, the duration of slip at each point is comparable to the duration of the dynamic rupture itself.  
Recently, observations showed that earthquake ruptures may propagate in such a way that the 
duration of sliding at each point along the fault is much shorter than the overall duration of the 
earthquake (Heaton [4]).   This mode is called pulse-like. 
    Zheng and Rice [1] showed that both crack-like and pulse-like modes can be obtained on 
homogeneous rate and state interfaces with rate-weakening steady-state frictional properties and 
established what determines the rupture mode.  In simplified terms, the rupture is pulse-like when 
the interface is under low pre-stress and crack-like when the interface is under high pre-stress 
where what is low or high in stress is quantified by the amount of rate weakening of the friction 
law.  In the pulse-like mode, the sliding is dynamically arrested; this process is called self-healing.  
Note that while pulse-like ruptures can be generated by self-healing on rate-weakening interfaces 
with appropriate properties, this is not the only mechanism for producing slip pulses.  Other 
candidate mechanisms include dynamic normal stress variations on interfaces between materials of 
different elastic properties and arrest waves from heterogeneities on the interfaces. 
     In our simulations, we observe another, muti-pulse, mode of dynamic rupture propagation as 
discussed in section 4.  Section 3 discusses the linearized stability analysis of steady sliding that 
allows us to explain the initiation and spacing of the multiple pulses.  We conclude in section 5 by 
discussing the implications of this new multi-pulse mode of dynamic rupture propagation and 
where it fits in the crack-like vs. pulse-like picture. 
 

2  NONLINEAR RATE AND STATE FRICTION LAWS  
The interfaces considered in this study are governed by nonlinear rate and state friction laws that 
have been developed in the last 25 years to explain various experimental results and geophysical 
observations (Lapusta et al. [5], Rice et al. [3], and references therein).  The laws incorporate the 
dependence of frictional resistance on the instantaneous sliding rate V (given by the relative 
particle velocity across the interface) and state variables.  The state variables describe the evolving 
properties of the microscopic asperity contacts on the interface. 
     For the case of constant in time normal stress σ and one state variable θ, the general 
formulation of these laws is given by 

( , ),   / ( , ),f V d dt Vτ σ θ θ ϕ θ= =                                                (1) 

where τ is the frictional strength (resistance) of the interface which is equal to the shear stress 
during sliding, 0σ >  is the compressive normal stress acting across the interface, and f is the 
friction coefficient.  V and θ, and hence f and τ, depend on space variables and time.  Note that σ 
in this formulation can vary in space but not with time.  This is appropriate for the present study 
that considers sliding on a planar interface between identical elastic half-spaces because such 
sliding does not alter normal stress.  If elastic properties were different on the two sides of the 
interface or the interface were non-planar, the sliding would dynamically alter normal stress.  To 
describe properly the effects of normal stress that varies in time, eqns (1) would have to 
incorporate additional dependencies as discussed in Rice et al. [3] and references therein. 



     For laws (1) to reflect laboratory experiments, nonlinear functions ( , )f V θ  and ( , )Vϕ θ  should 
have certain properties.  In sliding at a constant sliding rate V, the frictional resistance τ evolves 
toward the corresponding steady-state value ss ( )Vτ .  This is described by the evolution of θ 
toward the constant value ss ( )Vθ  that satisfies ss( , ) / 0V d dtϕ θ θ= = .  In the vicinity of the steady 
state corresponding to an arbitrary sliding velocity V*, eqns (1) linearize to  

[ ]
* * * *

* *
ss ss ss* * *

d d ( )( ) ,   ( ) ( ) ( )
d d

a V V a bV V V V V
t V t L V
τ σ στ τ τ τ −
= − − = + − ,                 (2) 

where a*, b*, and L* are obtained by evaluating the appropriate combinations of the partial 
derivatives of functions ( , )f V θ  and ( , )Vϕ θ  at the steady state values V = V* and *

ss ( )Vθ θ= .  
Hence a*, b*, and L* are numbers, in general dependent on V*, that describe frictional properties of 
the interface for sliding velocities V in the vicinity of V*.  The term with a* reflects the 
experimentally observed direct effect of the change in rate V on the change in τ.  That effect is 
always positive in experiments and hence we assume a* > 0 for any V*.  The next term 
incorporates the observation that during sliding with constant V the frictional stress τ  evolves 
toward its steady-state value ss ( )Vτ  through characteristic slip of order L*.  The dependence of the 
steady-state value of stress on V in the vicinity of V*, given by the second equation of (2), depends 
on the parameter * *( )a b− .  The friction has steady-state rate-strengthening properties if * *( )a b−  
> 0 and rate-weakening properties if * *( )a b−  < 0. 
 

3  LINEARIZED STABILITY ANALYSIS OF STEADY FRICTIONAL SLIDING 
To understand properties of the nonlinear laws (1), we pursue 2D linearized stability analysis of 
the steady sliding on a planar interface governed by laws (1) (Rice et al. [3] and references 
therein). Consider two elastic half-spaces sliding past each other steadily on the interface y = 0 
with the uniform sliding rate V* and shear stress * *

ss ( )Vτ τ= .  For simplicity and comparison with 
the simulations of section 4, we consider anti-plane perturbations here; the in-plane problem can 
be analyzed in a similar manner and has more involved, but conceptually analogous results.  To 
investigate the stability of such sliding to Fourier mode perturbations, we look for the anti-plane 
displacement solution ( , , )zu x y t  in the perturbed form 

*( , , ) sign( ) / 2 Re[ ( )exp(i )].zu x y t V t y U y kx pt= + +                                (3) 

Hence we impose a perturbation of wavenumber k (and wavelength 2 / kπ ) and look for its 
behavior in time characterized by the (complex) parameter p.  The equation for p can be found by 
finding U(y) from the elastodynamics equations and then making the shear stress that corresponds 
to the solution (3) on the interface y = 0 equal to the linearized frictional resistance (2).  The 
resulting equation for p is  

2 * * * * *
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+ + =

+
,                                (4) 

where µ is the shear modulus, cs is the shear wave speed, and the square-root term has branch cuts 
from i sk c  to i∞  and from i− ∞  to i sk c−  in the complex p plane so that the real part of the 
square root is non-negative.  The details of deriving (4) can be found in Rice et al. [3] where eqn 
(4) are analyzed to determine whether the perturbations are stable or unstable.  Rice et al. [3] show 
that, for interfaces with steady-state rate weakening, there is a critical wavelength such that the 
perturbations with shorter wavelengths decay and the perturbations with longer wavelengths grow.  
Sliding on steady-state rate-strengthening interfaces is stable to perturbations of any wavelengths. 
     Here we study the behavior of the growing wavelengths in the case of steady-state rate 
weakening (Lapusta and Rice [2]).  The nondimensional parameters of the problem are 



Figure 1:  Behavior of the growing perturbations. 
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In eqns (5), λ is the nondimensional wavelength of the perturbation, T describes the steady-state 
rate weakening, and TA describes the direct rate effect.  In terms of parameters T and TA, the 
critical wavelength is given by 2 1/ 2

crit 1/( / )AT T Tλ = + .  We find that for each combination of 
parameters T > 0 and TA > 0 and each wavelength critλ λ> , there is a pair of roots p with Re(p) > 
0.  For 0 < T < 1, these roots are complex conjugate.  For T > 1, they are complex conjugate for λ 
not too different from critλ  but for larger λ they first coincide as a double positive root and then, as 
λ → ∝, one of these roots goes to 0 while the other goes to ( 1) /( 1)AT T+ − . 
     We find the roots by solving the equation (4) numerically.  For every combination of T and TA 
we considered there is a wavelength of maximum growth rate.  Figure 1 shows solutions p with 
Im(p) > 0 for a fixed value of  TA and several values of T.  The values of T and TA were picked to 
enable comparison with simulations discussed in section 4.  Each curve is parameterized by the 
wavelength λ: Points at the Im(p) axis correspond to critλ λ= and λ increases as the curves move 
out into the half-plane Re(p) > 0.  Black dots mark solutions p that correspond to the wavelength 
λmaxrate of the maximum growth rate.  We see that the maximum growth rate depends significantly 
on the value of T, varying from ~0.0001 for T = 0.02 to ~0.1 for T = 0.7.  Another interesting 
feature is the supersonic phase velocity of some larger wavelengths. 
 

4  MULTI-PULSE MODE OF RUPTURE PROPAGATION 
We simulate dynamic rupture propagation along the interface governed by the rate and state 
friction laws of the form 

ss
ln( / ) d ln( / ),   1 ,   ,
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= = − =

− + + +
   (6) 

where a, b, fo, Vo, L, and Vweak are frictional parameters.  The laws (6) are based on the standard 
Dieterich-Ruina formulation (Lapusta et al. [5] and references therein) but allow for much stronger  
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Figure 2:   Initiation of multiple pulses (left).  Well-developed pulses later in time and further 
along the interface (right).  The axes show nondimensional values.  Note the difference 
in scale between the two plots. 

 
 
steady-state rate weakening at sliding rates V comparable to or larger than parameter Vweak.  Such 
stronger weakening might occur at high sliding rates due to thermal processes such as flash 
heating (Rice [6]) or other effects (e.g., Di Toro et al. [7]).  If weakV = ∞  then eqns (6) resemble the 
standard formulation that allows only for logarithmic rate weakening.   
     The simulations are done in the 2D anti-plane elastic context; the methodology is similar to 
Lapusta et al. [5].  The dynamic ruptures nucleate at the rheological transitions between steadily 
sliding regions with steady-state rate-strengthening properties and locked regions with steady-state 
rate-weakening properties.  The ruptures then propagate into the rate-weakening regions.   
     The example of the rupture progression in space and time is shown in Figure 2.  The parameters 
of the law (6) used in this simulation are a = 0.01, b = 0.014, fo = 0.6, Vo = 10-6 m/s, and Vweak = 20 
m/s.  In Figure 2 (left), the points with high sliding rates correspond to the rupture front.  Behind 
the front, the sliding is originally in the crack-like mode (e.g., at 0.2 in nondimensional time) but 
later the sliding destabilizes into a wavy pattern.  Analyzing the stability of the nearly steady 
sliding behind the rupture front as in section 3, we find that the wavelength of maximum growth 
rate λmaxrate predicted by the analysis is consistent with the wavelength of the observed instability 
as marked in Figure 2.  The relevant (for this case) curve in Figure 1 is the solid curve that 
corresponds to T = 0.55.  During subsequent rupture propagation, the instability grows into well-
separated pulses.  Figure 2 (right) shows rupture propagation at later times and further along the 
interface.  The maximum-growth wavelength λmaxrate is again marked and corresponds very well to 
the distance between pulses; note that the scale is different on all axes compared to Figure 2 (left).  
The pulses are well-resolved numerically both in time and in space and are reproducible in 
simulations with higher numerical resolution.   
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     In an analogous simulation but with Vweak essentially equal to infinity (the change that results in 
much smaller rate weakening), no instability is observed behind the rupture front and the rupture 
remains crack-like (results not shown due to space restrictions).  The relevant curve in Figure 1 is 
now the one enlarged on the right that corresponds to T = 0.02.  The value of TA is approximately 
equal in both cases.  The first case (shown in Figure 2) has much higher effective rate weakening 
behind the rupture front and hence much higher growth rate of the wavelength λmaxrate (the growth 
is exponential and the exponent is about 70 times larger in the first case).  That growth rate is high 
enough to initiate multiple pulses sufficiently quickly, before the friction properties at the spatial 
region of interest change significantly.  In the second case, the growth rates are too small to 
manifest themselves in the changing frictional environment behind the rupture front.   
 

5  DISCUSSION 
Multiple pulses can propagate along interfaces governed by rate and state friction laws of steady-
state rate-weakening type when the steady-state rate weakening is strong enough.  In terms of the 
classification given by Zheng and Rice [1], this new multi-pulse mode of dynamic rupture 
propagation fits in the transitional regime between the crack-like and pulse-like modes.  The 
multiple pulses nucleate when the approximately steady-state sliding behind the rupture front 
destabilizes.  The wavelength of this process can be predicted from the linearized analysis of 
steady sliding and corresponds to the wavelength of the maximum growth rate.  To produce 
multiple pulses, the steady-state rate weakening should be strong enough at high sliding rates to 
result in sufficiently large instability growth rates.  The classical logarithmic Dieterich-Ruine laws 
do not provide adequate weakening but they have been formulated based on slow experiments 
with sliding velocities in the range of 1 µm to 1 mm.  When the formulation is expanded to include 
the possibility of enhanced rate weakening at high slip rates, multiple pulses start to occur.  Such 
enhanced rate weakening may take place due to thermal or other effects (e.g., Rice [6], Di Toro et 
al. [7]). We also see single pulses as the simulation parameters are changed appropriately, e.g., in 
the direction of even stronger weakening, as predicted by Zheng and Rice [1].  The observed 
multi-pulse mode can accumulate slip comparable to the crack-like mode while having local 
properties of the pulse-like mode.  This new mode can have significant implications for the 
frequency content of ground motions generated by earthquakes and it would be important to study 
whether this multi-pulse mode occurs during earthquakes.  
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