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ABSTRACT 

 

The two-parametric fracture criterion for a problem of quasi-static growth of a crack with bridged zone is 
proposed. The energetic characteristics of the large scale bridged crack (the strain energy release rate (ERR) 
and the rate of the energy dissipation by the bonds (RED)) are introduced. The condition of the crack tip limit 
equilibrium is the equality of the ERR and the RED values (the first necessary condition of fracture). The 
second condition of fracture is the condition of the bond limit stretching at the trailing edge of the bridge 
zone. Based on these two fracture conditions the regimes of the bridged zone and the crack tip equilibrium 
and quasi-static growth are considered. Analytical application of the proposed criterion for the problem of the 
straight crack in homogeneous plane with the rectilinear law of the bonds stresses was performed. In the 
general case of the bond stress dependent on the crack opening the problem of the bond stress and the 
energetic characteristics determination is transformed to the numerical solution of the singular integral-
differential equations system. The estimations of the equilibrium size of the bridged zone, the adhesion 
fracture energy and the external fracture stress depending on the crack size are found. 
 

1  INTRODUCTION 

Composites based on polymers or ceramics matrix and filled by nanosized particles or 
nanotubes are materials with strong and tough mechanical properties. The mechanisms of 
toughening these materials by nanoparticles are investigated experimentally and theoretically 
(Qian at al., [1], Xia at al., [2], Srivastava et al., [3], Wanga and Pyrzb, [4]). From the 
experimental observations ([1-2], [5]) was found that the crack bridging mechanisms is very 
important during nanocracks formations and fracture of nanocomposites. Noted that in the most 
observed cases the size of the nanocrack bridged zones were comparable with the whole crack 
size. In these cases need the special consideration during the bridged zone and crack tip growth. 
Below the two-parametric fracture criterion for a problem of quasi-static growth of a crack with 
large scale bridged zone is proposed and considered. 

Let us consider a straight crack of length  at an interface of two dissimilar elastic half-
planes such that the crack is placed at

2
0x y≤ , = . Assume that the uniform tensile stresses, oσ , 

are applied at infinity normal to the interface. Consider segments of length d  (end zones) adjacent 
to the tips of the crack, ( )d x− ≤ ≤ . In these zones the surfaces of the crack interact with each 
other, which suppresses the crack opening. The physical nature of the crack surfaces interaction is 
generally changed depending on the crack scale and distance from the crack tip. The interatomic 
and intermolecular forces are limiting mechanisms of the surfaces interaction at the small 
distances from the crack tips (where the crack opening does not exceed the size of the region of the 
molecular forces action) while "mechanical" forces prevail at relatively larger distances. For 
polymers and nanocomposites with polymers or ceramics matrix these mechanical bonds are 
chains of molecules, nanotubes and nanoparticles. For these materials, as a rule, the size of the 
bridged zone is comparable to the size of the whole crack (large scale bridging). To describe 
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mathematically the interaction between the surfaces of the crack, we assume that there exist bonds 
between the surfaces of the crack at the end zone. The law of deformation of these bonds, which is 
generally nonlinear, is given. 

Under the action of external loads, 0σ , the stresses  appear in the bonds between the 
surface of the interface crack at the boundary between different materials. These stresses have the 
normal  and tangential  components 

( )Q x

( )yq x ( )xq x

 2( ) ( ) ( ) 1y xQ x q x iq x i= − , = −  (1) 

The surfaces of the crack are loaded by the normal and tangential stresses which are numerically 
equal to these components. 
The opening of the interface crack,  at( )u x 0x y≤ , = , can be written as follows 
 ( ) ( ) ( )y xu x u x iu x= −  (2) 

where  and  are the projections of the crack opening 

on the coordinate axes, 

( ) ( ) ( )y y yu x u x u x+ −= − ( ) ( ) ( )x x xu x u x u x+ −= −

x yu u+ +,  and x yu u− −,  denote the components of the displacements of the upper 
and lower crack surfaces. 

The relation between the crack opening and the bond tractions (the bond deformation 
law) depends on the physical origin of the bonds and their properties. The general form of spring-
like bonds deformation law can be written as follows, (Goldstein, Perelmuter, [6]) 

 0 0 0( ) ( ) ( ) ( ) ( )i i
B

Hu x c x q x c x x
E

σ σ γ σ= , , , = ,  (3) 

where 0γ  is a dimensionless function, H  is a linear scale proportional to the bonding zone 
thickness, BE  is the effective Young modulus of the bonds and the function  can be considered 

as the effective bond compliance, 

0c
2 2
x yq qσ = +  is the modulus of the traction vector, . ,i x y=

The bonds stresses and the crack opening along the crack end zone are determined from numerical 
solution of the singular integral-differential equations system in the case of the bond deformation 
law with displacements depends on bonds stresses [1, 2]. 

2  TWO PARAMETRIC FRACTURE CRITERION 

Supposing that the bonds stresses and the crack opening along the crack end zone are 
known, the total potential energy of a body containing a crack with bridged zone (in the absence of 
body forces) is  
  (4) ( ) ( )

e i

ij i i
v s s

w dv t u ds u dsεΠ = − + Φ ,∫ ∫ ∫

where ( )ijw ε  is the density of the deformation energy in the body volume , v ijε  are the 
components of the strain tensor;  are the tractions and displacements at the body boundary 
and (or) crack surfaces 

i it u,

es ;  is the density of the strain energy of the bonds in the crack end 
zones, u  is the crack opening in the end zones of area 

( )uΦ

is . 
The crack limit equilibrium corresponds to the following condition 



 

( ) ( ),,

( ) ( ) 0ij i i
v s s

G dG d

e i

bondtip

w dv t u ds u dsε
⎡ ⎤∂Π ∂ ∂

− = − − − Φ =⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

∫ ∫ ∫  (5) 

The terms in the brackets represent the strain energy release rate at creation of a new crack surface 
and the last term is the rate of the energy absorption in the crack end zone and is associated with 
the energy necessary to create a unit of its new surface. Note, that within the framework of the 
model the rate of the energy absorption depends on the end zone size and bond characteristics. The 
equilibrium end zone size is not assumed to be constant. It can be determined from condition (5) 
while searching for the critical load needs additional conditions of the bond rupture. 
In the general case the strain energy release rate can be defined through the stress intensity factors 
 2( )tip BG d K, = ,   (6) 

where the parameter depends on the elastic properties of materials and 2
I IB

2
IK K K= +  is the 

modulus of the stress intensity factors due to the external loads and the stresses in the crack end 
zone. 
The stress intensity factors (SIF) I IIK ,  for the interface bridged crack are determined in [6]. 

Let us calculate the rate of the energy absorption for the interface crack with bonding. 
Denote by (bondU d ),  the work of the deformation of bonds and by (bondG d ),  the rate of the 
energy absorption per unit thickness of the body. Then  

 (( ) ( ) ( ) bond
bond bond

d

U dU d b u dx G d
b−

)∂ ,
, = Φ , , =

∂∫  (7) 

where b  is the body thickness.  
The density of the strain energy of the bonds is equal to  

 
( )

2 2 2

0

( ) ( ) ( ) ( ) ( )
u x

2
x yu u du u x u x u x q qσ x yσΦ = , = + , =∫ +  (8) 

After differentiation in formula (7) with respect to the upper and the bottom limits of the integral 
we can get  

 ( ) ( ) ( )bond
c b

d

U d u x u dx G G
b

σ
−

⎛ ⎞∂ , ∂
= + −⎜ ⎟∂ ∂⎝ ⎠
∫ ,

duσ

m

 (9) 

where  

  (10) 
( ) ( )

0 0

( ) ( )
u u d

c bG u du G uσ
−

= ;, =∫ ∫

If we consider the model of the crack with zero opening at the crack tip ( (  then  
and it is necessary to add in the left part of (9) the value of the intrinsic toughness of the matrix 
material  

) 0)u = 0cG =

 2c mG c γ=  

where  is the volume fraction of the matrix material and 2mc mγ  is the matrix toughness. 
Finally, we obtain the following expression for the rate of the energy absorption 



 
( )

0

( ) ( )( ) ( ) ( ) ( )
u d

y x
bond y x c

d

u x u xG d q u q u dx u du Gσ
−

−

∂⎛ ⎞∂
, = + − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

)

 (11) 

where the second term is the density of deformation energy allocated at break of the bond at the 
trailing edge of the crack end zone.  
For a homogeneous material or an adhesion layer connecting different materials the following 
relations are held  

  (12) 
( )

0

( )
u d

c bG G u duσ
−

= = ∫

In this case the expression (11) completely coincides with similar expressions from [6, 7]. 
For a weak matrix material  we suppose ( c bG G 0cG =  in (11). In this case  if 

 and therefore this approach coincide with Barenblatt’s model in this limit [6]. 
( ) 0bondG d , →

0d / →
The condition of the crack tip limit equilibrium (5) can be rewritten as follows taking into account 
the notation from the formulae (6) and (12) 
 ( ) (tip bondG d G d ), = ,  (13) 

Condition (13) is necessary but insufficient for searching for a limit equilibrium state of the crack 
tip and the end zone. This condition enables us to determine the end zone size, , such that the 
crack tip is in an equilibrium at the given level of the external loads. To search for the limit state of 
both the crack tip and end zone within the framework of the model one should introduce an 
additional condition, e.g., the condition of bond limit stretching at the trailing edge of the end zone 

crd

0 crx d= −  
 2 2 1 2

0 0 0( ) ([ ( )] [ ( )] )x yu x u x u x crδ/= + =  (14) 

where crδ  is the bond rupture length. 
If 
 ( ) (tip bondG d G d ), ≥ ,  (15) 

at a certain end zone size, , and d
 ( ) cru d δ− <   (16) 

then the crack length increases with the end zone growth up to the size  without bond rupture. 
This stage of the crack growth can be treated as the system shakedown to the given level of the 
external loads (subcritical crack growth). 

crd

The crack tip advance with simultaneous bond rupture at the trailing edge of the end zone occurs if 
both conditions 
 ( ) cru d δ− ≥   (17) 

and (15) are fulfilled. 
The regime of bond rupture at the trailing edge of the end zone without the crack tip advance is 
observed then conditions 
 ( ) (tip bondG d G d ), < ,  (18) 

and (17) are fulfilled. In this case the size of the end zone decreases and tends to the limit value 
 at the given load. crd



The end zone size and crack length are reserved within the framework of the model if the 
inequalities (16) and (18) hold. Thus, the bond rupture characteristics and load level determine the 
fracture regimes: 1) the crack tip advance with the end zone growth; 2) end zone shortening 
without the crack tip advance; 3) the crack tip advance and bond rupture at the trailing edge of the 
end zone. 

Solving jointly eqs. (13-14) we can determine the critical external loads 0σ , the end zone 
size  and the adhesion fracture resistance at the crack limit equilibrium state for the given crack 
length and bond characteristics. 

crd

3  CRACK WITH UNIFORM BRIDGED STRESSES 

At first, the analytical consideration of the proposed criterion is performed for the 
problem of the straight crack in a homogeneous plane with the rectilinear law of the bond stress. In 
this very simple case the normal bridged stresses in the crack end zone are prescribed , 
uniformly distributed along the end zone and independent on the crack opening. The normal 
displacements of an upper crack surface for this problem  are given by (Panasyuk, [8]). 

0( ( ) )Q x P=

0 ( )u x
In the case small scale bridging condition we obtain from eqs. (13-14) of the two-

parametric criterion the critical end zone size which is independent on the crack size in a small 
scale bridging limit ( see details in Perelmuter, [9]) 

 
2

0 0
0

1 , ,
8

cr c
cr

b

E Gd d d d
P

π δη η η⎛ ⎞
⎜ ⎟⎜ ⎟∞ ⎝ ⎠

= = + − = =
G

 (19) 

and the critical external stress ( is Young modulus of material) E

 ( ) ( )01 b ccr
cr

E G GEPδσ η
π π

+
= + =  (20) 

The size and the shape of the crack end zone do not change in the case of small scale bridging, 
therefore, the condition of autonomy of the end zone is satisfied and the energy absorbed to bonds 
in the end zone is equal to the energy released while breaking the bonds at the edge of the end 
zone. Thus, the total flow of the energy to the crack tip is spent on formation of a new surface of 
the crack. For this reason relationships (19-20) coincide with results which was obtained in (Cox, 
Marshall [10]) on the basis of the two-parametric fracture criterion with the first force condition of 
fracture 0 b IcK K K− = , where 0K  is the SIF due to an external loading, bK  is the SIF due to 
bonds and IcK  is the matrix toughness. Noted that in the force fracture criterion [10] the work of 
bonds in the crack bridged zone is neglected and for the large scale bridging the noticeable 
difference is observed because, for example, nanotubes are rather deformable and stiff in compare 
to matrix material and their strain energy must not be ignored. 
 In the case of the uniform bridge stress it’s possible to get the analytical solutions for the 
critical end zone size and the external stresses also for the large scale bridging case [9]. The 
dependencies of the critical end zone size 0crd d vs the critical crack size 0cr dλ = is given in 
fig. 1. It’s interesting to not note, that for composites with a weak matrix material ( 0.5)η < the 
critical end zone size is increasing during the crack growth (nanocraze formation), see the 
experimental results in [1]. 
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Fugure 1: The critical end zone size vs the critical crack size 
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