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ABSTRACT 

In the complex engineering structures the use of bonded joints are often preferred to more traditional methods 
of fabrication such as bolts and welds since they are lighter and spread load more evenly. For determination 
the durability of such structures it is necessary to know well the stress field around stress concentrators. At 
the free edge of bonded joints between the adhesive and the adherend layers it is well-known that there exists 
an elastic singular stress field. However, little is known about the material behavior beyond the yield point.  
This paper presents the small-scale yielding plane-strain asymptotic field calculated for the interfacial free-
edge joint singularity. The geometries are idealized as elasto - plastic materials with Ramberg - Osgood 
power - law hardening proprieties bonded to a rigid substrate. The solutions were obtained using a fourth 
order Runge - Kutta numerical method fitted to the governing equations and verified with a highly focused 
finite element analysis. The stress singularity order is formulated in terms of the hardening parameter and 
elastic solution for incompressible material. 
 

1 INTRODUCTION 
Failure of interfacial systems frequently initiates, at the free-edge joint between two materials, 
where a stress singularity also exists, leading to the development and propagation of an interface 
crack. The analysis of such interfacial free-edge stress fields is just as important, therefore, to our 
understanding of crack initiation and growth though in comparison to the interface crack it has 
received far less attention. Further, no direct link has been established between the asymptotic 
singular fields for the interfacial free-edge joint and the interfacial crack-tip to enable the process 
of crack initiation at the joint to be completely understood.  Part of the reason for this is thought to 
be that a description of the process leading to crack initiation assuming purely elastic behaviour is 
complicated by the difference in stress singularity orders and fields.  Indeed, it has been shown by 
Klingbeil & Beuth [1] that conflicting solutions are obtained if designing to prevent debond of the 
interfacial free-edge joint and/or to prevent propagation of an interfacial crack. Furthermore, the 
same limitations of the elastic solution apply to the interfacial free-edge joint, i.e. the stress and 
strains are unbounded.  Relatively little effort has been paid to the elasto - plastic behaviour of the 
free-edge singularity except for the determination of plastic zone size and shape [2, 3]. There 
appears to have been no attempt made to understand the asymptotic elasto-plastic behaviour of the 
interfacial free-edge joint. 
     In this paper, the asymptotic structure of the elasto - plastic stress field at the interfacial free-
edge joint is considered for a quarter of a Ramberg - Osgood hardening material and a rigid  
material bonded perfectly to form a half plane. Within the framework of small-scale yielding 
(SSY) the singular fields for different hardening coefficients are numerically calculated by 
developing asymptotic solutions to the fundamental equations of equilibrium and compatibility, 
and by the FE method.  The asymptotic structure of the stress and displacement field developed at 
the bonded free-edge joint is obtained using an approach similar to that of Sharma & Aravas [4] 
for the interface crack.  A highly focused finite element (FE) analysis provides corroborative 
solutions for the interfacial free-edge joint.   
 
 



2  ASYMPTOTIC  SOLUTION FOR THE INTERFACIAL FREE – EDGE JOINT 
We consider the plane strain problem of an interface free-
edge joint with the geometry presented in Figure 1. The 
constitutive behavior of the deformable medium is 
characterized by the J2 deformation theory for a Ramberg – 
Osgood uniaxial stress –strain behavior: 
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where εij is the infinitesimal strain tensor, σo is the yield 
stress, E/oo σ=ε  is the yield strain , the deviatoric 

stress is given by: ijkk3
1

ijijs δσ−σ= , the Mises 

equivalent stress is defined as: ( ) 2/1
ijij2

3
e ss=σ , n is the 

power-law hardening exponent )(1 ∞≤≤ n , E is the 

Young’s modulus, ν is the Poisson’s ratio, ijδ  is the Kronecker delta, and α is a material constant. 
     To obtain the asymptotic solution the problem is formulated in terms of the leading order 
stresses ( )0~σ : 

 
( ) ( ) ( ) ( ) ( ) ...~

J
r

Q~
J

rI,r 1
t

00
s

n00

0

+θ





 σ

+θ





 σαε

=
σ

θ
σσ

σ
 as   0r →  (2) 

 
and the corresponding displacement leading order expansion of the form: 
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where ( )0~σ  and ( )1~σ  are normalised angular functions, s < t < 0, J is the J-integral, and Q is the 
parameter controlling the magnitude of the second term.  In this expansion for the interfacial crack 
tip s = - 1/(n+1) and the exponent t is also negative.  The quantity In is defined [4], [5] as: 
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where n1=sinθ, n2=cosθ and the components of stress and displacement are understood to be 
Cartesian rather than polar. 
     The eqns. (2) and (3) are substituted into the governing equations of equilibrium and stress-
strain relationship (Sharma & Aravas [6, 7]). Terms having like powers of r are collected and 
hierarchy of problems is obtained.  The leading order problem that defines σ(0) and u(0) consists of 
five non-linear ordinary differential equations:  
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Figure 1: Interfacial free - egde 
joint geometry 
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     A second order problem may be expressed as a linear eigenvalue problem to solve for the 
exponent t and the eigen-functions for the corresponding stresses σ(1) (and displacements u(1)).  A 
fourth-order Runge - Kutta solution to the eqns. (5) was obtained for different values of the 
hardening exponent n using the proprietary software Mathcad (v.2000), distributed by Adept 
Scientific Ltd.). An iteration scheme was used to determine the solution s to the non-linear 
eigenvalue problem and the subsequent distributions for the stresses and displacements that satisfy 
eqns. (5), and the boundary conditions: 

 
( ) 02/,rσ =πθθ ,   ( ) 02/,rσ r =πθ                                         (6) 

 
( ) 00,ru r = ,   ( ) 00,ru =θ                                                     (7) 

 
     These asymptotic solutions were verified by a FE analysis performed using the software Lusas 
(v13.2, distributed by FEA Ltd., Kingston, UK).  Highly - focused, refined meshes for the 
interfacial free-edge joint were prepared using four-noded linear elements until satisfactory 
convergent results were obtained.  Preliminary trials to perfect the mesh were performed using the 
interface crack tip geometry that was compared with known solutions.  The eventual FE mesh used 
for the interface joint problem consisted of a quarter-circle domain with boundary displacements 
applied calculated using the asymptotic elastic solution to the singularity problem.  Logarithmic 
seeding was used in the radial direction consisting of 10 nodes per decibel for 

1r/rlog5 p ≤≤− .  In the circumferential direction, the region was separated into 6 elements of 

uniform spacing between 0° and 9°, and 28 elements of uniform spacing between 9° and 90°. The 
displacements on the 0° radial were zeroed to simulate bonding to a rigid substrate and traction-
free boundary conditions were assumed on the 90° radial. The authors used nine-noded Lagrangian 
elements and the B-bar approach to elasto - plastic analysis that seems to have been accepted in the 
literature as conventional. 
 

3  RADIAL VARIATIONS IN THE ASYMPTOTIC STRESS AND STRAIN FIELDS  
Determination of the parameter s by the asymptotic analysis provides the stress singularity order.  
To verify this hypothesis, the radial variation of the Von-Mises equivalent stress, )0(~

eσ , and polar 



component of shear strain, )0(~
θεr , respectively for the four cases of hardening n = 1.1, 5, 10, and 50 

are plotted in Figures 2 and 3.  Nodal values of stress and strain from the FE analysis are plotted as 
white circles for the radial o45=θ  in the sector ( ) 1r/rlog4 p ≤≤− , where rp is the extent of 
the plastic zone. The asymptotic solution has been superimposed as a straight line of the 
appropriate gradient given by s to enable the region of singularity dominance to be determined.             
The singularity orders determined by the asymptotic solution are confirmed by the FE analysis 
since there is very good agreement between the results in general. 
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 b) n=5 
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c) n=10 
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d) n=50 
Figure 2: Radial variation of the asymptotic normalised plane-strain equivalent stresses for the 

interfacial free-edge at θ=45° (line=asymptotic, markers=FE). 

 
 

θ=45o, n=1.1

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

-4 -3 -2 -1 0 1

log (r /r p )

 a) n=1.1 

θ=45o, n=5

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

-4 -3 -2 -1 0 1

log (r /r p )
 

b) n=5 

)0(~log eσ  

)0(~log eσ  

)0(~log eσ  

)0(~log eσ  

)0(~log θεr  
)0(~log θεr  



θ=45o, n=10

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

-4 -3 -2 -1 0 1

log (r /r p )
 

c) n=10 

θ=45o, n=50

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

-4 -3 -2 -1 0 1

log (r /r p )
 

d) n=50 
Figure 3: Radial variation of the asymptotic normalised plane-strain polar shear strains for the 

interfacial free-edge at θ=45° (line=asymptotic, markers=FE). 

     The singularity orders for the interfacial free-edge joint obtained by the asymptotic analysis are 
shown plotted against hardening exponent n in the graph of Figure 4 as black squares.  

The elasto - plastic singularity order for 
the interfacial free-edge joint sjoint could 
be determined by the expression: 
 

n1
s2

s elastic
intjo +

⋅
=  (8) 

 
where selastic is the elastic singularity order 
for the interfacial free-edge joint . 
The singularity orders for the interfacial 
free-edge joint obtained by the asymptotic 
analysis appear to fit a coefficient in eqn. 
(8) of selastic= -0.4.  The order calculated 
by an elastic analysis based on that of 
Bogy [8] gives selastic= - 0.28, and 
consequently would not enable eqn. (8) to 

give a good fit to the solutions from the asymptotic analysis. However, a remarkable fit to the 
asymptotic solutions using eqn. (8) is obtained if the incompressible value for Poisson’s ratio is 
used for the upper material half, i.e. 5.0=υ . If the singularity order is calculated by an elastic 
analysis based on that of Bogy [8] this yields λ - 1 = -0.4065.  In other words, the singularity order 
for the elasto-plastic behaviour at interfacial free-edge singularity may be predicted using eqn. (8) 
if selastic is calculated by an elastic analysis assuming incompressible material. This is verified by 
plotting eqn. (8) in Figure 4 using selastic = -0.4 as shown by the solid black line. Further support for 
this hypothesis may be reasoned since the derivation of the governing asymptotic eqns. (5) 
assumes incompressible material also. 
     An implication of eqn. (8) is that the singularity order for the strain-energy-density is always –
0.8 for any value of n.  This was verified by the FE analysis and the asymptotic analysis, and show 
good agreement 
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Figure 7: The singularity order s versus 
hardening exponent n 



3  CONCLUSIONS 
For an isotropic elasto - plastic material bonded to a rigid substrate the SSY asymptotic plane-
strain behaviour at the interfacial free-edge joint has been identified for several values of the 
hardening exponent n.  Using an asymptotic analysis the polar components of equivalent stress and 
shear strain have been determined and were confirmed by a highly - focused FE analysis.  The 
singularity orders under elasto - plastic behaviour were identified and shown to be only dependent 
on the hardening exponent n and not on the elastic properties of the material. The singularity 
orders for the joint, for given n, could be predicted using a formula proposed by authors.  
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