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ABSTRACT

Steady-state tunneling and plane-strain delamination of an H-shape crack are examined for elastic,
isotropic multi layers. Both tunneling and delamination are analysed by employing linear elastic
fracture mechanics within a 2D finite element framework. Failure maps are produced to reveal the
sensitivity of cracking path to the relative toughness of layer and interface, and to the stiffness
mismatch of layers.

1 INTRODUCTION
The fatigue and fracture behaviour of fibre-metal laminates and fibre-reinforced ceramic-
matrix composites is of current technological interest because of the increasing number of
applications enjoyed by these materials in aerospace engineering, transport industry and
general engineering. A typical laminate structure is an alternating stack of aluminium alloy
sheets and fibre-reinforced epoxy layers. Laminates reinforced by aramid and glass fibres
are commercially known as ARALL and GLARE, respectively, and have been extensively
tested over the past 15 years (Vlot and Gunnink, [1]). It has been found experimentally
that these laminates are fatigue-resistant since the fibre-epoxy layers arrest the transverse
growth of a mode I crack in the metal layer. Instead, the crack tunnels, see Figure 1.

Over the last two decades, the mechanics of crack branching at an interface between
two dissimilar materials has been studied for various geometries. An extensive overview
of studies on interface delamination can be found in Hutchinson and Suo [2]. The current
study considers possible crack propagation paths for alternating layers of two dissimilar but
isotropic elastic, brittle solids, designated as materials ’1’ and ’2’ in Figure 1. The initia-
tion/nucleation phase of cracking is neglected, and it is assumed that the crack has grown
from a large pre-existing flaw in the mid-layer (material 1). The competition is addressed
for: (i) tunneling of a mode I crack in the mid-layer with delamination absent (mechanism
1), (ii) tunneling of an H-shape crack with constant delamination length (mechanism 2),
and (iii) unstable delamination in all directions (mechanism 3). Failure mechanism maps
are constructed to reveal the sensitivity of the operative cracking mechanism to the relative
toughness of layer and interface, and to the stiffness mismatch of the layers. The application
of the present model is demonstrated in Suiker and Fleck [3,4] through comparisons with
experimental data for the residual strength and the fatigue crack growth rate in fibre-metal
laminates.

Although tunneling is a 3D phenomenon, the remote stress for steady-state tunneling
can be computed from a plane-strain elasticity solution for an H-shape crack: the differ-
ence in strain energy upstream and downstream of the tunneling crack front is equated to
the delamination work and, for simplicity, the delamination toughness Gdc is taken to be
independent of the mode-mix (Hutchinson and Suo [2], Beuth, [5], Cox and Marshall [6]).
This assumtpion does not induce large errors: in the present study the mode-mix attains a
steady-state value at relatively small delamination lengths.
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Figure 1: Three possible failure mechanisms for a laminate of two dissimilar, isotropic materials.
Mechanism 1 : Tunneling of a mode I crack without delamination. Mechanism 2 : Tunneling of an
H-shape crack with constant delamination length. Mechanism 3 : Unstable delamination growth
in all directions.

2 STEADY-STATE TUNNELING AND PLANE-STRAIN DELAMINATION
Consider the case of an H-shape crack tunneling within a symmetric stack of 3 layers as shown
in Figure 2a; it is assumed that the tunneling crack has nucleated from a flaw within material
1 and is driven by a remote load, characterised by a (uniform) tensile strain εinf , where the
subscript ’inf’ denotes ’infinity’. The strain level may either represent static or fatigue
loading. The Poisson ratios of the materials are assumed to be equal and representative of
many fibre-reinforced laminates, ν1 = ν2 = 0.3. The stiffness mismatch is expressed in terms
of the ratio of plane-strain stiffness moduli, Ē2/Ē1. The H-shape crack comprises a mode
I crack of width 2a within material 1, and four delaminations each of length l, as depicted
in Figure 2a. During steady-state tunneling the tunneling front has a constant shape, and
the energy release rate is independent of the tunneling length (and of the geometry of the
initial flaw from which the tunneling crack initiated). Then, the energy released per unit
tunneling depth can be computed as the difference in elastic strain energy ∆W upstream
and downstream of the tunneling front (Hutchinson and Suo [2], Beuth [5], Ho and Suo [7]).
This energy drop equals the difference in strain energy for an uncracked plane-strain solid
and for a cracked plane-strain solid. For the H-shape crack of Figure 2a the energy drop
equals

∆W =
1
2
σinf,1 δ̄ 2a, (1)

where σinf,1(= Ē1 εinf ) equals the remote tensile stress in material 1 and δ̄ equals the
average displacement over the mode I crack faces, according to

δ̄ =
1
2a

∫ a

−a

δ(x) dx. (2)
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By dimensional considerations, the average displacement δ̄ may be written in the form

δ̄ =
a σinf,1

Ē1
f

(
l

a
,
Ē2

Ē1

)
, (3)

where the dimensionless function f depends upon the aspect ratio of the H-shape crack l/a
and the stiffness ratio Ē2/Ē1. Upon inserting eqn (3) into eqn (1), the energy drop per unit
crack depth is

∆W =
σ2

inf,1

Ē1
a2f

(
l

a
,
Ē2

Ē1

)
. (4)

This energy drop can be related to the energy release rate for H-shape tunneling crack Gtun,
and to the energy release rate for plane-strain delamination Gd for each of the four delami-
nations of an H-shape crack, as follows.

Steady-state tunneling by an H-shape crack
The average energy release rate for unit advance of a tunneling H-shape crack, Gtun, is
directly related to the energy drop ∆W by (Hutchinson and Suo [2], Beuth [5], Ho and Suo
[7])

(2a+ 4l)Gtun = ∆W. (5)

Also, the energy drop ∆W equals the energy required to form a mode I crack of length 2a
in the central material 1 and four delaminations, each of length l . Upon designating the
mode I toughness of material 1 as GIc, and the delamination toughness at the appropriate
mode-mix as Gdc(ψ(l̂)), the energy balance reads

∆W = (2a+ 4l)Gtun = 2aGIc + 4l Gdc. (6)

The remote stress for steady-state tunneling, σtun = σinf,1, follows from eqns (6) and (4) as

σtun =

√
Ē1(2aGIc + 4l Gdc)
a2 f(l/a, Ē2/Ē1)

. (7)

Plane-strain delamination
For the H-shape crack of Figure 2a the plane-strain energy release rate per unit advance of
each delamination is

Gd =
1
4
∂∆W
∂ l

, (8)

where the factor 4 reflects the number of delamination tips of the H-shape crack. Insertion
of eqn (4) into eqn (8) yields

Gd =
σ2

inf,1

4Ē1
a f ′

(
l

a
,
Ē2

Ē1

)
, (9)

where f ′ represents the partial derivative f ′ = ∂f/∂l. The remote stress for plane-strain
delamination, σd = σinf,1 is obtained by combining eqn (9) with Griffith’s criterion Gd =
Gdc, and rearranging the expression to the form

σd =

√
4 Ē1Gdc

af ′(l/a, Ē2/Ē1)
. (10)
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Figure 2: Plane-strain cracking: (a) H-shape crack as a results of a uniforom remote strain εinf .
(b) H-shape crack in the centre layer of a laminate with a 5/4 lay-up.

3 CRACKING IN A 5/4 LAY-UP
Plane-strain delamination and steady-state tunneling is addressed for an H-shape crack in
a 5/4 lay- up, as depicted in Figure 2b. Each layer of material 1 is of thickness 2a while the
layers of material 2 have a thickness of 5a/3. This thickness ratio is typical of that used for
the fibre-metal laminates GLARE and ARALL, where aluminium sheets of thickness 0.2 to
0.4 mm are bonded by somewhat thinner fibre/epoxy layers (Vlot and Gunnink [1]).

3.1 Modelling aspects
The configuration in Figure 2b has been modelled with the aid of the finite element pro-
gram, ABAQUS Standard (Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, U.S.A.). The
degree of symmetry is such that only one quadrant is meshed. Fixed and roller supports
impose the required symmetry and prevent rigid body motion. The strip is taken to be
sufficiently long for end effects to be negligible: the top and bottom faces of the 5/4 lay-up
are at a distance 200a from the delamination tip. H-shape cracks with delamination lengths
in the range 0.015 < l/a < 40 have been considered, using 7 different element meshes.
Mesh refinement studies have been performed to check the convergence of the solution. All
finite element configurations comprise 16000 to 20000 plane-strain 8-node iso-parametric
elements, with 3x3 Gauss quadrature. At the delamination tip, the square root singularity
of the stress field is simulated by moving the mid-side nodes on the crack flanks to the 1/4
point nearest to the crack tip. Additionally, for each crack tip element, three neighbouring
nodes are collapsed to the crack tip. A calculation of the critical stresses for steady-state
tunneling, eqn (7), and for plane-strain delamination, eqn (10), of an H-shape crack requires
the computation of: (i) the displacements of the nodes situated on the mode I crack faces,
(ii) the path-independent J-integral at the delamination tip, (iii) the complex stress intensity
factor at the delamination tip, K = K1 + iK2. More details on how these parameters are
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obtained from the numerical analyses can be found in Suiker and Fleck [3].

3.2 Mode-mix
For the configuration in Figure 2b, the mode-mix ψ, which is evaluated at a specified dis-
tance ’a’ ahead of the crack tip, has been computed as a function of the delamination length,
l/a, and the results are presented in Figure 3 for selected values of stiffness mismatch, in
the range 0.1 to 10.0. It is seen that the mode-mix at short crack lengths decreases from
72o to 50o with increasing stiffness ratio. For all stiffness ratios considered the mode-mix
increases to 90o with increasing l/a. Accordingly, the delamination tip closes and becomes
a pure mode II crack.

Because the influence of mode I contact
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Figure 3: Mode-mixity ψ versus delamination
length l/a.

has been neglected in the analysis (i.e. crack
face overlap is allowed to occur), the current
analysis is, strictly speaking, not applicable
when delamination is in pure mode II. How-
ever, Dollar and Steif [8] have demonstrated
that for an H-shape crack in a homogeneous,
infinite medium, the mode II stress intensity
factor for a frictionless crack with and without
crack face overlap only show minor differences.
In other studies of mixed-mode delamination
this feature was assumed to hold on the ba-
sis of heuristic reasoning. Thus, it is expected
that the computed energy release rates are not
greatly in error when the effect of crack surface
contact is neglected.

3.2 Failure mechanism map
The minimum stress at which an H-shape crack will tunnel can be found from the numer-
ical results by equating the remote stress for plane-strain delamination, eqn (10), with the
tunneling stress, eqn (7), i.e. σd = σtun (Suiker and Fleck [3]). A failure mechanism map
can be constructed, in which the minimum tunneling stress σtun,min is plotted against the
toughness ratios Gdc/GIc, see Figure 4a. The figure can be used to estimate the (critical)
tunneling stress for assumed values of Gdc/GIc and Ē2/Ē1. The three failure modes are
displayed with the location of their boundaries indicated by dashed lines. Stable tunneling
(mechanism 2 ) dominates the map for Ē2/Ē1 < 1. For each curve of tunneling stress ver-
sus toughness ratio the transition from one mechanism to another is indicated by a black
dot. At low toughness ratios mechanism 3 operates, whereas at higher toughness ratios
and for Ē2/Ē1 ≥ 1 mechanism 1 operates; alternatively, at higher toughness ratios and for
Ē2/Ē1 < 1 mechanism 2 operates.

The corresponding values of the delamination length at tunneling are shown in Figure
4b as a function of the toughness ratio Gdc/GIc. For Ē2/Ē1 = 3.0 and 10.0 it is difficult
to obtain the precise shape of the curve in the transition from mechanism 1 ( (l/a)tun = 0)
to mechanism 3 ( (l/a)tun → ∞); this transition occurs abruptly due to the small range
of Gdc/GIc values over which mechanism 2 is operational, see Figure 4a. Hence, for
Ē2/Ē1 = 3.0 and 10.0 the anticipated trends for mechanism 2 are represented by dashed
lines. It is concluded from Figure 4b that H-shape cracking with a finite delamination

5



Gdc / GΙc

0.0 0.2 0.4 0.6 0.8 1.0 1.2

σ tu
n,

m
in

 (E
1G

I c
/a

)-0
.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Mechanism 1 

Mechanism 2

Mechanism 3

E2 
/ E1 = 0.1

3.0

10.0

1.0

0.3

Gdc / GΙc

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(l  
/  a

) tu
n

0

2

4

6

8

10

0.3

1.0

3.0

10.0

E2 / E1 = 0.1

(a) (b)

Figure 4: Cracking in the centre layer of the 5/4 lay-up. (a) Minimum tunneling stress σtun,min

versus fracture toughness ratio Gdc/GIc. Dashed lines indicate the zones corresponding to the three
failure mechanisms in Figure 1. (b) Delamination length (l/a)tun versus fracture toughness ratio
Gdc/GIc.

length, exceeding (l/a)tun = 0.1, only occurs over a narrow range of values for Gdc/GIc.
For (relatively high) toughness ratios where 0 < (l/a)tun < 0.1, it becomes difficult experi-
mentally to distinguish between mechanism 2 with delamination present, and mechanism 1
with delamination absent.

4 CONCLUDING REMARKS
Results for fracture patterns and geometries other than that in Figure 2b can be found in
Suiker and Fleck [3]. Further, in Suiker and Fleck [3] the present model is used to predict
experimental data for the residual strength of fibre-metal laminates. The application of the
present model for the prediction of crack growth rates in fatigue experiments on laminates
has been discussed recently in Suiker and Fleck [4].
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