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ABSTRACT

Computer simulations can give us atomic resolution information about fracture processes that are very hard to
study experimentally, because they happen deep inside a material at speeds too high for any atomic-resolution
probe.  However, the range of length scales involved, from elastic strain fields to interatomic bonds, makes
such simulations challenging.  I present our coupling of length scales approach that addresses some of these
difficulties by combining different simulation methods in different parts of the system.  I discuss some
general issues of such coupling approaches, and present our results using an implementation that combines
two different atomistic simulations methods: a quantum-mechanical model of bonding near the crack tip, and
an empirical interatomic potential far from the crack tip. Using this coupled method we have carried out
extensive simulations of fracture in single crystal silicon at low temperatures that show brittle fracture in
agreement with experiment.  The critical loading for fracture is slightly above the Griffith criterion prediction,
indicating that lattice trapping is small but significant.  I present a model for the lattice trapping energy barrier
that explains the low barrier when tight binding is used to describe the bond breaking process.  This model
also explains the qualitative failure of several popular empirical potentials for silicon in their description of
fracture.

1  INTRODUCTION
Structural materials need to retain their shape under mechanical loading.  If the loading is too
large, the material fails.  One of the most common modes of failure is fracture, where a crack
grows under the applied strain until the material breaks.  During fracture the elastic load on a
macroscopic system is concentrated at the crack tip, and this provides the driving force that breaks
the bonds between atoms ahead of the crack.  Since what ultimately controls the strength of the
materials is the bonding between the atoms, understanding fracture requires an understanding of
the atomic scale processes at the crack tip.  Getting such information experimentally is quite
difficult: although some very nice work has been done under special conditions (Bouchaud [1]),
the fracture process usually happens deep inside the material, and the crack can move quite
quickly compared with the speeds of atomic-resolution probes such as HRTEM or AFM.
Atomistic simulations can provide exactly this type of information, but there are many challenges.
The simulation must describe the interatomic bonding accurately.  Since the bonding is mediated
by the valence electrons a quantum-mechanical (QM) description would be the most accurate, but
the computational cost limits QM methods to a few thousand atoms for dynamic simulations.
Such a small number can perhaps describe the crack tip region, but the elastic strain field extends
much farther.  Empirical potential (EP) simulations that approximate the interatomic interactions
without an explicit QM description can simulate millions of atoms, but it is not clear if EPs are
accurate enough to describe the bond breaking process.  Since even the smallest experimental
system comprises many more than 106 atoms, a full description will require another method,
perhaps a continuum elasticity approach that does not explicitly consider the atomistic nature of
the material.



Combining different simulation methods can help describe this wide range of length scales.
The QM description of bonding can be used near the crack tip. An EP description can be used
farther away, where the issue of accuracy in bond breaking is not relevant.  The long-range strain
fields can then be described by a continuum approach such as the finite element method (FEM).
This coupling of length scales approach was developed by a number of groups, although in most
cases only EP and FEM descriptions were used (Hoover [2], Rafii-Tabar [3], Mullins [4],
Abraham [5], Ogata [6]).  Here I present a method that uses an accurate QM description of
bonding near the crack tip, coupled to an EP description of bonding far from the crack.  The two
methods are used in a molecular dynamics (MD) simulation to simulate the time evolution of the
atomic positions.
The coupling allows for dynamics simulations of the propagation of a crack through the material.
The FEM is not used because it adds complications to the coupled method and it is unnecessary for
this work.  The difficulty in coupling FEM and atomistic simulations is primarily in the description
of the material:  the FEM uses a continuous field of strains or displacements, while the atomistic
method treats the atoms as point masses.  Most of the gain in efficiency in the FEM comes from
the ability to coarsen the mesh of elements used to solve the continuum equation.  However, a
mesh with different resolution at different regions can introduce artifacts into the dynamics.
Finally, a constitutive law must be provided for the continuum equation, and for dynamic
simulation including the nonlinear and temperature dependent material properties is quite difficult.
In addition to these technical difficulties, the FEM region is simply not needed.  The typical time
for a QM calculation of a MD step is of order 10 s.  A run time of 1 day translates to about 104

time steps, or about 10 ps.  Since the rate at which information travels in the material is the speed
of sound, this time scale implies a length scale of 40 nm (assuming a sound speed in silicon of
about 4 km/s).  A 40 nm system can be simulated using EPs, without the complexity entailed in
coupling an atomistic description to a continuum field description.

2  METHOD
The dynamically coupled EP and TB (DCET) method (Bernstein [7]) uses a minimal-basis tight-
binding total energy method to simulate interatomic bonding in a small region.  Our simulations
use the TB model for Si of Bernstein and Kaxiras (Bernstein [8]).  To enable the calculation of
forces using TB in a finite part of a large system we use a linear scaling Green’s function based
computation of the electronic density matrix (Bernstein [9]).  The environment dependent
interatomic potential (EDIP) is used in the rest of the simulated system (Justo [10]).  The system is
partitioned into a TB region and an EP region, with a boundary region between the two.  The TB
problem is solved in the TB and boundary regions, subject to the constraint that Green’s function
matrix elements involving atoms in the boundary region are fixed to their bulk Si values (Bernstein
[9]).  The EP forces are calculated on all atoms.  The time evolution of the system is computed
using the molecular dynamics method with the velocity-Verlet time-integration algorithm (Allen
[11]), which requires the force on each atom.  Atoms in the TB region are propagated using TB-
calculated forces, while atoms in the boundary and EP regions are propagated using EP forces
(Bernstein [7]).  While this approach does not have a well-defined total energy, the TB forces are
in practice more accurate than previous implementations (Abraham [5]) that used severe
approximations to compute the TB forces in a formulation that did have a well-defined total
energy.  We find that this trade off of increased accuracy of forces in exchange for uncertainty in
energy conservation results in more accurate simulations.

Initializing the simulation requires the position and velocity of every atom in the system.  We
use a single-crystal Si structure of a crack under mode-I (tensile) loading in plane-strain.  The
crack is initialized as a thin slit parallel to the (1 1 –2) direction, exposing (1 1 1) faces, with a
(1 –1 0) crack front.  The whole sample of 54000 atoms is about 40 nm by 23 nm by 1.1 nm, and



the crack is initially 20 nm long.  A TB region of about 5.5 nm by 1.7 nm surrounds one of the
crack tips, surrounded by a 0.65 nm thick boundary region.  Free boundary conditions are used in
the two large dimensions, while periodic boundary conditions are used along (1 –1 0) to obtain
plane-strain conditions.  The initial atomic positions are computed by applying the displacement
field of an infinitely thin crack in an infinite plate loaded in tension (pulled along the (1 1 1)
direction) (Broberg [12]) to the initial positions.  Velocities are chosen randomly with a mean
corresponding to a temperature of 200 K.  Atoms along the edges parallel to the crack face are held
fixed to apply the tensile load.

Figure 1: Visualization of cracked system

Figure 2: Crack speed as a function of applied load

3  RESULTS
When the system is allowed to evolve in time the crack propagates by cleaving bonds between two
(1 1 1) planes.  The crack remains atomically sharp, and the exposed surfaces remain on the same
pair of crystallographic planes.  A visualization of the system is shown in Fig. 1.  This behavior is
clearly consistent with brittle fracture, which is experimentally observed for Si at low
temperatures.  In addition to these qualitative observations, it is possible to quantitatively study the
crack propagation process as a function of applied loading.  A plot of the crack propagation speed
as a function of loading, measured in terms of the energy release rate G, is shown in Fig. 2.  The x-
axis is normalized by the Griffith criterion critical energy release rate Gc, which is the minimal
load for fracture that satisfies energy conservation (Griffith [13]).  The experimental results (From
Hauch [14]) are normalized by the best-known value for Gc using a first-principles calculation of
the surface energy of Si.  It is clear from the graph that both experiment and our DCET simulations
show fracture very near the Griffith critical load, while the two EPs we tested, EDIP and the
Stillinger-Weber (SW) potential (Stillinger [15]) only fracture at much higher loads. In fact, these



two EPs do not show brittle fracture at all: the crack only propagates when dislocations are emitted
and the material near the crack tip becomes amorphous.

4  DISCUSSION
To understand the reason for the differences between the DCET and EP results we begin with an
important observation:  for the EPs there is a wide range of loadings that are above the Griffith
criterion critical load, but below the load needed to create any bond breaking events at the crack
tip.  When this event occurs, it is a dislocation nucleation.  For the DCET simulation, in contrast,
this range of strains is small, and the bond-breaking event is the propagation of the crack by one
lattice spacing.  The resistance of the EP simulation to crack propagation even above Gc is called
lattice trapping (Thomson [16]).  It is a manifestation of the discrete nature of the atomic structure
of the material.

To analyze the source of the lattice trapping we develop a model for the bond breaking
process that separates the energy into two parts: bond breaking, and elastic relaxation.  This model
is similar to the work of Curtin (Curtin [17]), although different assumptions (discussed below)
lead us to different conclusions.  To quantify these two contributions we perform a series of
constrained EP simulations that force the bond ahead of the crack tip to break.  By tracking the
energy of the system as the bond breaks, we measure the energy barrier to crack propagation.  The
bond-breaking contribution to this energy barrier can be extracted from a simulation that separates
a bulk solid into two semi-infinite slabs.  Once this contribution is subtracted from the energy
barrier, the remainder is the elastic energy relaxation.  By repeating this process for different EPs,
we find that the elastic energy contribution is universal up to two normalization factors: the
magnitude of the energy (i.e. the energy release rate G), and the opening of the crack one lattice
spacing behind the crack tip. This model reproduces the energy barrier for the empirical potential
simulations.  To apply the model to the DCET simulation, we calculate the bond breaking energy
using a conventional periodic-boundary condition TB simulation.  Combining this energy with the
scaled universal elastic energy contribution gives a small but finite lattice trapping energy barrier
for TB.  The energy scaling factor is computed from the EP (EDIP) elastic constants, while the
crack-opening distance is extracted from a sub-critical crack simulation.

Figure 3: lattice trapping energy barrier as a function of crack opening s



The results of the direct calculations of the barrier and the model are shown in Fig. 3. The
two upper lines show the direct calculation (circles) and model prediction (solid lines) for the SW
potential, and for a modified form of SW (IMSW) (Holland [18]), at the Griffith critical load.  The
two dashed lines in the upper panel show the energy barrier at the actual critical load, which
corresponds to dislocation nucleation for SW and brittle fracture for IMSW.  The lower panel
shows the energy barrier for the DCET simulation at Gc (solid line) and at the observed critical
load for brittle fracture (dashed line).  From this plot it is clear that the reason the SW simulations
do not show brittle fracture is that they have excessive lattice trapping.  Even at high loadings
(indicated in the graph as a low energy at large crack opening), high enough to nucleate a
dislocation, SW still shows a significant energy barrier to crack propagation.  The modified form
of SW also shows a large barrier at Gc, but the modification suppresses dislocation nucleation and
allows brittle fracture to occur, albeit at much too high a load.  The DCET simulation, on the other
hand, shows only a small barrier that disappears at the observed critical load.

The energy barrier occurs because of the interplay between bond breaking and elastic
relaxation.  These two processes each have a length scale, and it is variations in both length scales
that explain the differences between the different simulations.  The bond breaking distance varies
because of the different physical descriptions of bonding.  In particular, the EPs are relatively short
ranged, because it has proven challenging to find a functional form that captures the physics of
covalent bonds in the bulk, which occur only between nearest neighbors, without ignoring the long
range interactions that occur as the crack-tip bond is breaking.  The crack-tip opening distance also
varies significantly among the models.  This indicates that there is some deviation from linear
elasticity (which predicts a particular opening) and/or that the precise location of the hypothetical
continuum crack tip relative to the lattice is different in the different models.  The DCET
simulation, because of the use of TB at the crack tip, has a longer distance for bond breaking, and
a smaller crack opening.  Both of these factors combine to reduce the lattice-trapping barrier as
compared with the EP simulations.  Curtin (Curtin [17]) also noted these two length scales, but
perhaps because of his choice of materials he assumed that the bond breaking length is always
much larger than the crack opening distance.

5  CONCLUSION
Atomistic simulations of fracture can reveal microscopic detail of crack-tip processes, but only if
the wide range of length scales involved can be adequately addressed.  Coupling different methods
in different parts of the system has proven to be an effective approach for doing this in dynamical
simulations.  While three different methods have obvious applicability to different parts of a
fracturing system, scaling arguments show that often only two need to be used in a single
simulation.  Using an atomistic simulation method that couples an accurate TB description of
bonding near the crack tip to an EP description of bonding far from the crack tip, we have
simulated brittle fracture  in silicon at low temperatures.  Our simulations show brittle fracture, in
agreement with experiment, at a load very near the Griffith criterion critical load.  These results
are a qualitative improvement over several popular empirical potentials that show dislocation
nucleation and plasticity at the crack tip.  Since this work was originally published there has been
one EP simulation using the modified embedded atom method that shows brittle fracture with
moderate amount of lattice trapping (Swadener [19]).  Unfortunately, direct comparison to
experiment is nearly impossible: estimates of error in the experimentally measured energy release
rates are too large, and there is no technique for measuring the surface energy.  A final resolution
of the true magnitude of lattice trapping in Si will await more precise experiments and better first
principles calculations of the surface energy for input into the Griffith criterion prediction.
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