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ABSTRACT

The entire process of ductile failure is modelled, from the initiation of damage to crack propagation. The microscopic
material degradation mechanisms which trigger cracks are modelled by a softening elastoplastic behaviour. Mesh
objectivity and length scale effects are accounted for by a gradient enhancement. The two governing partial differential
equations, i.e. equilibrium and a nonlocal averaging equation, are solved in a staggered manner, which renders a
very simple implementation in existing finite element codes. Adaptive remeshing is used to optimise the use of finite
elements, so that finer elements are used in the regions of high strain localisation. Upon complete material failure
cracks are introduced via remeshing. A number of metal forming simulations are shown which illustrate the main
model features.

1 INTRODUCTION
In the design of blanking and other metal forming processes, it is not only important to predict when and
where cracks will originate, but also their trajectory, since these trajectories determine the shape of the
final products. Optimising this shape may allow to eliminate subsequent processing steps and thus result in
considerable savings.

The microscopic processes which are responsible for fracture can be modelled in the form of material
softening, as in continuum damage mechanics (Lemaitre [1]) or softening plasticity (Gurson [2]). In a finite
element context, strongly mesh dependent results can be avoided by using regularising techniques. Among
them, gradient models enjoy great popularity. They have been used successfully in elasticity and plasticity
to account for length scale effects (Fleck and Hutchinson [3]), brittle damage (Peerlings et al. [4]) and
ductile damage (Geers et al. [5]).

When the material fails, new free surface is created and a continuous solution can no longer be used.
To model discrete cracks different numerical methods can be used, e.g. remeshing (Bittencourt et al. [6]),
Partition of Unity Methods (Belytschko and Black [7]) or element erosion. Remeshing has the advantage
that besides tracing crack paths, it can also be used to keep the mesh well shaped, which is important in a
large strain framework. Adaptive remeshing techniques have been developed to optimise the use of finite
elements in a mesh (Zienkiewicz et al. [8]). Mesh adaptivity is desirable in combination with softening
materials, since these tend to form highly localised deformations in relatively small narrow regions, in
which a high element density is desired.

In this work a combined continuous softening – discontinuous crack model is presented. A gradient
enhancement in the form of Geers et al. [5] is used, which introduces a length scale. A staggered approach
is used, which circumvents the solution of the coupled problem (equilibrium plus nonlocal averaging),
thus rendering its implementation in existing elastoplastic models straightforward. Remeshing is used for
the above mentioned threefold purpose: to trace the crack geometry, keep the mesh well shaped and for
adaptivity.

2 GRADIENT ENHANCEMENT OF AN ELASTOPLASTIC MODEL
Ductile damage is introduced as in Geers et al. [5] by degrading the yield stress of an elastoplastic model
by a softening factor (1− ω p):

f (σ , εp, ωp) = σeq − (1− ωp)[σy(εp)] ≤ 1 . (1)



ωp is a damage variable (0 ≤ ω p ≤ 1), f denotes the yield function, σeq the equivalent vonMises stress
and σy(εp) the undamaged yield stress as a function of the equivalent plastic strain.

Unlike in Geers et al. [5], where a hyperelastoplastic model was used, here an existing hypoelastoplas-
tic model of a commercial software, MSC.MARC, is used. This allows to take full advantage of features
which are needed for forming processes, e.g. contact, a range of constitutive material models, thermal
effects, etc.

Strongly mesh dependent results are avoided by introducing a non local variable ψ̄ , which is related
to ωp via the Kuhn-Tucker loading-unloading conditions

ω̇p ≥ 0, ψ̄ − ωp ≤ 0, ω̇p (ψ̄ − ωp) = 0 , (2)

as well as an initial value ωp(t = 0) = 0 and the limit ωp ≤ 1.
ψ̄ and its local counterpart ψ are related by the partial differential equation (PDE)

ψ̄ − �2 ∇2ψ̄ = ψ . (3)

In this equation, ∇2 denotes the Laplacian with respect to the current (Eulerian) configuration; � is an inter-
nal length parameter which sets the width of the localisation band, and for which a physical interpretation
can be found, e.g. the average void spacing. Homogeneous Neumann boundary conditions are assumed for
ψ̄ .

The local variable ψ in (3) follows from the evolution law

ψ̇ = 1

C

〈
1+ A

σh

σeq

〉
εBp ε̇p . (4)

This expression has been inspired by the fracture indicator proposed in Goijaerts et al. [9] and is based on
Oyane’s work for porous plastic materials (Oyane et al. [10]), which accounts for the fact that damage is
driven by the plastic strains and increases for higher triaxiality.

3 NUMERICAL ASPECTS
The equilibrium equation

�∇ · σ = �0 (5)

and non local averaging equation (3) form a coupled problem. A monolithic algorithm to solve these equa-
tions has been developed by Mediavilla et al. [11]. For many applications, however, a staggered approach
similar to that used in Simo and Miehe [12] for thermoplasticity may be more practical. In a staggered
approach the coupling of the two PDEs is made only at the end of every increment. First, equilibrium is
solved for a constant damage variable ω p , which will give new stresses σ and equivalent plastic strain ε p .
After updating the local variable ψ , the second step is to compute the nonlocal variable ψ̄ via the averaging
equation. This will allow to update the damage ω p and the new yield stress σy , which are then used in
the following load increment. This obviously introduces some degree of error, but for the small time steps
which are necessary in real applications, this error has been found to be quite acceptable.

Isodamage step:
For a constant damage, the equilibrium problem is solved in an updated Lagrangian form using the

implicit commercial software MSC.MARC. Upon convergence, the local damage variable ψ is updated
numerically by employing a one-step integration rule.

�ψ = (( 1 − θ )htω + θ hω)�ε , where hω = 1

C

〈
1+ A

σh

σeq

〉
εBp (6)

and htω follows by evaluation of the latter expression at the end of the previous timestep. The parameter θ
allows to select explicit (θ = 0) and implicit integration (θ > 0).

Nonlocal averaging at fixed configuration:



The damage variable follows by enforcing the weak form of Eq. (3), which after making use of the
divergence theorem and the boundary conditions reads

∫
�

(
w ψ̄ + �2 �∇w · �∇ψ̄

)
d� =

∫
�

wψ d� , (7)

wherew is a standard test function. This weak form is discretised in a standard manner by inserting interpo-
lated fields for w and ψ . Solving the resulting linear algebraic system gives the non local variables, which
allows to update the damage variable

ωp = maxτ (ψ̄) . (8)

For each Gauss point, the damage variable is subsequently used to determine the yield stress σ y according
to Eq. (1) and these values are inserted into the plasticity analysis in MSC.MARC.

4 MESH ADAPTIVITY AND CRACK PROPAGATION
Since the plastic strains localise in the regions with highest damage, the mesh density is set depending on
the damage spatial distribution.

Cracks are introduced upon total material failure, i.e. at ω p = 1, thus rendering a smooth transition
from the continuous damage stage to a discrete crack. The crack direction is computed from the damage dis-
tribution around the crack tip and full remeshing is performed to accommodate every new crack increment
during the crack advancement. Note that each remeshing must be followed by a transfer of state variables
from the old discretisation to the new discretisation. The way in which this transfer is done has been found
to have an important effect on the accuracy and numerical stability of the computations, see Mediavilla et al.
[11] for more details. Each of the above operations is carried out outside MSC.MARC.

5 APPLICATIONS
Simulations of two metal forming processes have been carried out to illustrate the main model features. In
these simulations, the standard contact options in MSC.MARC have been used.

Score forming:
To ease the opening of food cans, a groove is made in the can lid. During the forming process which

is used for this purpose, known as score forming, cracks may develop which have an important effect on
the residual strength of the lid. Experiments and simulations show that shear bands originate at the bottom
of the indenter, which accelerate the void growth and eventually give rise to cracks. Adaptive remeshing is
used to capture the form of these localisation bands (Fig. 1). The cracks which finally appear initiate at the
edges of these shear bands and then follow them. Two cracks grow, from the punch and die, creating a dead
zone or wedge. Depending on the material parameters, the model also predicts failure inside the specimen
(as in the figure) or at the bottom surface.

Blanking:
During blanking one wishes to accurately predict the shape of the cut surface. Experiments have

shown that the clearance between the punch and the die has an important effect on the final shape. In Fig.
2 the mesh and damage field are shown just before the product and sheet are completely separated. Mesh
adaptivity was used to capture the gradients in the sheared zone.

6 CONCLUSIONS
To model ductile failure in forming processes, from the nucleation of voids to fully developed crack propa-
gation, ductile damage is used in combination with discrete crack modelling. Mesh independent results are
obtained by means of a gradient nonlocal damage variable. The staggered approach followed allows to add
a gradient enhanced damage influence to the plasticity formulation of a commercial finite element software.
This is of special interest for engineers who wish to have reliable results when using softening materials,
since fully coupled implicit models are more difficult to implement.

In this framework, where large deformations, highly localised regions and discrete cracks are present,
the use or remeshing has proven to be extremely useful. Adaptive remeshing is highly recommended when
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Figure 1: Failure during score forming. Mesh and boundary conditions (top), zoomed mesh (left) and dam-
age (right).
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Figure 2: Failure in blanking. Mesh and boundary conditions (top), zoomedmesh (left) and damage (right).

one does not know a priori where cracks originate, since it allows to have an optimum mesh density distri-
bution.

ACKNOWLEDGEMENTS

This research was carried out under project number 2.98067 in the framework of the Strategic Research
Programme of the Netherlands Institute for Metals Research (NIMR).



REFERENCES
[1] Lemaitre J. Coupled elasto-plasticity and damage consitutive equations. Computer Methods in Ap-

plied Mechanics and Engineering, 51, 31–49, 1984.

[2] Gurson A. Continuum theory of ductile rupture by void nucleation and growth: part I - yield criteria
and flow rule for porous ductile media. Journal of EngineeringMaterials and Technology, Transactions
of the ASME, 99, 1–15, 1977.

[3] Fleck N., Hutchinson J. Strain gradient plasticity. Advances in Applied Mechanics, vol. 33, 295–361.
Academic Press, 1997.

[4] Peerlings R., de Borst R., Brekelmans W., Vree J.D. Gradient enhanced damage for quasi-brittle
materials. International Journal for Numerical Methods in Engineering, 39, 3391–3403, 1996.

[5] Geers M., Ubachs R., Engelen R. Strongly nonlocal gradient-enhanced finite strain elastoplasticity.
International Journal for Numerical Methods in Engineering, 56, 2039–2068, 2003.

[6] Bittencourt T.N., Wawrzynek P.A., Ingraffea A.R., Sousa J.L. Quasi-automatic simulation of crack
propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55, 321–334, 1996.

[7] Belytschko T., Black T. Elastic crack growth in finite elements with minimal remeshing. International
Journal for Numerical Methods in Engineering, 45, 601–620, 1999.

[8] Zienkiewicz O., Huang G., Liu Y. Adaptive FEM computation of forming processes. Application to
porous and non-porous materials. International Journal for Numerical Methods in Engineering, 30,
1527–1553, 1990.

[9] Goijaerts A., Govaert L., Baaijens F. Evaluation of ductile fracture models for different metals in
blanking. Journal of Materials Processing Technology, 110, 312–323, 2001.

[10] Oyane M., Sato T., Okimoto K., Shima S. Criteria for ductile fracture and their applications. Journal
of Mechanical Working Technology, 4, 65–81, 1979.

[11] Mediavilla J., Peerlings R., Geers M. Applications of a non-local ductile damage model to metal
forming processes including fracture. To be submitted, 2004.

[12] Simo J., Miehe C. Associative coupled thermoplasticity at finite strains: formulation, numerical anal-
ysis and implementation. Computer Methods in Applied Mechanics and Engineering, 98, 41–104,
1992.


