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ABSTRACT
The plane problem for an infinite plane that contains a circular inclusion with an imperfect interface is
studied. The explicit solutions are derived based on Stroh formalism and the material constants of the matrix
and the inclusion are both anisotropic and different from each other. The model for the matrix/inclusion
interface is considered as a spring-type layer with vanishing thickness such that the interface effect can be
described by continuous tractions but discontinuous displacements across the interface layer. By using
analytic continuation in a dua coordinate system, two interfacia conditions lead to the simultaneous
equations for two anaytical vector functions. The two vector functions which are the main part of the
expressions of displacement and stress function are expanded in forms of Laurent’s series. Thereafter, the
series coefficients are determined by comparing the coefficients whenever the terms associated with the
externa load are at hand. The methodology for this research is illustrated by solving an example that the
matrix is subjected to a remote uniform stresses field and the three interfacial parameters of homogeneous
imperfect interface are identical. The simple and straightforward features of the application of our results

reveal the applicability to those problems which is under more complicate external loading.

1 INTRODUCTION
In the real situation, the inclusion/matrix interface in the composite materials can be considered of
the concept for imperfect interface due to the existence of interface damage. Hashin [1] solved the
problem for a body contains a spherical inclusion. Ru and Schiavone [2] made an extensive
literature review for the problems for inclusion problems with imperfect interface. Ru [3]
presented a genera method for the problem of a circular inclusion with a circumferentially
inhomogeneous dliding interface in plane elastostatics. Kattis and Providas [4] use a superposition

method and the holomorphic transformation of a complex function regarding a circular boundary



to present an elastic field for an inclusion/matrix system with spring-type imperfect interface.
Sudak et. al. [5] presented a solution method for the circular inclusion problem. In this paper, the
normal and tangential spring-factor type interface parameters are circumferentially inhomogeneous
and set to be identical. Shen et. a. [6] considered an elliptic inclusion problem with homogeneous
imperfect interface. Recently, Schiavone [7] provided the solutions of the problem associated with
a circular elastic inhomogeneity embedded within an infinite matrix in antiplane shear.
Nevertheless, the problems in the above literature are all isotropic ones. As this author’s
knowledgement, there is no paper discussing the anisotropic inclusion problem with imperfect
interface found in the literature.

In this paper, we present explicit solutions for the problem associated with a generally
anisotropic circular inclusion embedded within an infinite generally anisotropic plane. The
materials constants of the inclusion and the matrix can be completely different from those of each
other and that the inclusion/matrix interface is imperfect. In order to demonstrate the applicability

of our results, an example that the matrix is subjected to remote uniform stress field is solved.
2 FORMULATION

On a coordinate system x;, i=1,2,3, the displacement vector u=[uy, U,, us]" and stress function

vector ¢=[ ¢y, ¢, ¢ for plane thermoelastic problems can be expressed as follows (Ting [8])

Figure 1. A circular inclusion/matrix system with imperfect interface



u=2Re{Af(z,)} ;4 = 2Re{Bf(z,)} , D)
in which A and B are Stroh matrices and a function vector f(z,) are

1(z,)=[f(z) f.(2) f.@)]. 2)
The notation [ ]" is denoted for the transpose of a matrix. The parameters in f,(z,), are z,=X;+P.Xe,
o=1,2,3, with p,being the elasticity eigenvalues whose imaginary parts are positive. The three
functionsf(z,) are considered of the same function form.

Consider an anisotropic matrix containing a circular inclusion that the materia of inclusion is
different from that of the matrix (see Figure 1). The regions for the inclusion and the matrix are
respectively denoted by S, and S; and all the function quantities associated with them are denoted
by the subscripts (1) and (2), respectively. Assume that the inclusion be bonded to the matrix by a
spring-constant-type layer that the interface conditions are given by

lo.(a,, 0)| =0, and o, (a,,0)=h|u,(a,.0)i j=r.0,z ()
where i, j stand for r, 6, and z, |4 =(+), - (*), denotes for the function value jump across the
interface and the three interfacial parameter h;, h,, h,, are nonnegative. Since
U =n'u;u,=m'u; u,=_(u),; 4
o,=n't, ;o,=m't,; o,=(t),, 5)
where n' =[cosf, sind, 0], m" =[-sin@, cosd, 0], t, =—a¢/ro0. Egns (4) and (5)
can be represented by
u, =Qu, o, (a,0) =90t (a,,0), (6)
where 6,=[ 6i(a0,6), 01 /a0,6), G730, A)]", u=[Ur(20,6), U0, 6), U2, 6)]" and
cosd snd O
Q=|-sind cosd 0. (7
0 0 1
Hence, egn (3) can be equivalently expressed by
l#(a,.0)|=0; O, (a,,0)=|u,(a,.0)| (8)
in whch, the diagonal matrix © =<<1/h, >>,a=r,0,z
Assume that the stress function ¢ and the displacement u for regions S, and S, are
u, =u” +2Re[A ,f;, (2,)]; v, =2Re[A,f, (z,)]; (9)
b =¢" +2Re[B 1, (2,)]; 4, = 2Re[B,f, (2,)]- (10)
Since the three interfacia points z,, a=1~3, are three separate points in the x; coordinate system,
therefore, it could not be easy to determine the two function vectors f;(z;), j=1,2, by the

interfacial conditions. In order to conquer this difficulty, we can use the following transformations



é/a(j) = [Za(j) + \/Z:(j) - ag(l"" pj(j))]/[ao(l_ ipa(j))]’a =1~3 J =12. (11)
The three point &), can merge to a single genetic point on the -plane, say §;==43=¢.
The two vector functions f;(z;)), j=1,2, can be expanded in Laurent’s series and expressed by

f(Z)(Za(Z)) =< Z)Umagg) >>= ZE)<< é/;(mz) >> N (12)
f,(2,,) =<< Z‘/lmag“;“(z) >>= Z‘<< Chy >, (13)

where Ne=[m1, 7mas 77m3]T and An=[Am1, Am2s /1m3]T are constant vectors to be determined.
Substituting egns (9), (10), (12) and (13) into the interfacial conditions (8) leadsto

—0Q(0¢" 1100) + Y[(im/ 2,)00B, 0, ¢ " - Y[(im/ a,)0QB,T,¢"]

—Qu +3 (QAN, QAL —QAL )"+ (QAR, - QAL — QAL )"
m=1 m=1

+ QA + QAT —QA L, - QA L, (14)

Q¢” +> (QB,n,—~ QB —QBA )" +QB,1, +QB,1, - OBA, — @Bk,

m=1
=3 (@B, + QB —QB,q,) " (15)
m=1

Thered quantities®@Q(d¢” /r00), Qu” and Q¢” can be expressed in the following forms

004" 1100) = 2Re{i DL+ cp;;}, (16)
Qu” =2 Re{i Ui+ U;}, (17)
Qp" =2Re|Y al " +7r;°}, (18)

where®” , U” and =, n=0~c0, are constants. Consider a new coordinate system X, i=1,2,3,
obtained by rotating x; ,i=1,2,3, about the xz-axis an angle 6, these two coordinates systems are
related by

X" =Qx, (19)

where x" =[x,x;,x]" and x=[x,X,,x] . If the four matrices A/ ,and B,
o By, by (Ting[8])

sz) =QB,. (20)

is in the x'
coordinate system, they are related to A
AI,-) =QA

()



By using (20), egns (14) and (15) can be equivalently expressed inthe x coordinate system as
—®re™ - ®7e™ +3 (im/a,)0B,n.e™ - (im/a,)0Bq.e ™
m=1 m=1
—Ue™ U™ + S (A, — Ak — AL )e ™ + S (AL — ALk, — Ak, )™
m=1 m=1
— A AR+ A, + AT, (1)
me ™ e e + Y (B, ~Bk, ~BL)e™ + By, + BW, - B}, B,
m=1
=3 B, + B, - B, )e™. (22)
m=1

Eqgns (21) and (22) imply the following two sets of equations

U2 +@° + (A, —im/a@B,)n, — AL —AL =0,m=12,... (23)
n+Bm, -BA —-BA =0,m=12,.. (24)
and
Ak — A, =®@; + Uy, (25)
Bk, B, =7;. (26)
After solving egns. (23) ~ (26), we can finally reach the following results
n, =B (AB" - A,B))(®; +U; —AB/'n;), (@7
A, =B[n) +(AB;'-AB")(®; +U; —AB'n;)], (28)
1, =B, (AB,})-im/a@®@-I)"(a’ -U: -®2),m=12,....., (29)
A, =(B] +A])@. +(B] +1)(A,B," +im/a@® 1) "(n; - U7 -®7). m=12,... (30)
4 EXAMPLE:

Consider a circular inclusion of radius a, existing in an infinite anisotropic elastic plane which
is applied at infinity a uniform stress. The three interface parameters are h,= hy/= h,= h. The
displacement u” and the stress function ¢ for the matrix can be expressed as (Hwu and Ting [9])

u” = XES X8, 47 =Xt %t 31)
inwhich
g =[e1.02e 1" &7 =[2¢;,6,.2e;]" 5 7 =[o,05,05]"; ] =[0;,0,,0,]". (32
Byusing x =a,(+¢ ™) /2, x,=-a,i({—¢)/2, wecanobtain
®; =hdv; ®; = he,v;®, =hdv,®” =0form>3 (33)
U; =dg; U7 =eg; U, =dg; U, =0form=> 3, (34



n, =—iadv;n; =iae,v;n, =iadv;n, =0form=>3; (35)
where v=—(t7 —it;)/2 and e=a,(e] —ig;)/2. Substituting (33) ~ (35) into (27) ~ (30)

leads to the expressionsfor &, and 7.

5 CONCLUSION
The anisotropic circular inclusion problem with imperfect interface is solved in this paper.
The explicit, simple and straightforward features of our results reveal that the solution method of

our study can also be applicable to those under more complicate loading.
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