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fatigue behaviour of concrete structures subjected to a high number of loading cycles were load-
controlled tests, so called Wöhler tests. Due to the predetermined upper and lower load level these tests 
are not capable to detect the softening behaviour of concrete, which might be essential to know with 
regard to durability of the concrete members. In this contribution the conventional approach to fatigue 
failure by means of Wöhler tests is compared with a fracture mechanical approach based on the results 
of deformation-controlled cyclic tensile tests, which provide also the softening behaviour of concrete.  
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ABSTRACT 

In this contribution the well established approach to fatigue failure by means of load controlled 
is compared with a fracture mechanical approach, which considers the softening behaviour o
observed in deformation controlled tensile tests. Therefore, a series of load as well as deformatio
uniaxial tensile tests on notched and on unnotched concrete prisms was carried out, respective
parameters in the experiments were the number of cycles to failure, the curing conditions, the co
and the frequency and the deformation rate, respectively. The load controlled tests provided 
which were nearly parallel to each other for all investigated parameters, except for the tests on h
concrete showing a line more inclined. The experimental results from the deformation con
showed in particular that for an increasing number of load cycles the corresponding envelope cu
significantly from the monotonic curve. This clearly showed that the previous conventional assu
unique envelope curve for the fatigue behavio

conclusion that both approaches are useful for different applications and they can not b
reciprocally by just a simple transformation formula.  
 

1  INTRODUCTION 
The establishment of a European high-speed railway transportation system was and still i
challenging tasks for railway construction engineers. For this railway net often superstru
ballastless slab tracks made of concrete or asphalt are used instead of the usual crushed sto
The advantages of ballastless slab tracks are a stable and durable rail position, the reduced r
of intensive maintenance, a long-term durability and an individual adjustment to various v
load profiles. Furthermore, ballastless slab track constructions are lower in height which m
in tunnels to require less ground exca

ificial building structures. On the other hand – compared to crushed stone subbase –
restricted possibility for rail position correction, a higher investment cost, a limited facility 
recycling and a higher sound emission. In a calculation the reduced stiffness of the load beari
of ballastless slab track structures has to be taken into account by replacing the bedding mo
specific support point stiffness, see also [1].  

Since traffic loads are occurring periodically the concrete structures have to be 
concerning their behaviour under cyclic loading conditions. So far the experiments to ch



2  EXPERIMENTAL PROGRAM OVERVIEW 
Both, the load controlled and the deformation controlled tensile tests with non-rotatable 
were performed on notched concrete prisms schematically shown in fig. 1, left. The tests w
out on specimens of two concrete grades, namely a normal strength concrete (NSC) w
cement ratio w/c of 0.55 and a high strength concrete (HSC, w/c = 0.30). For both concr
maximum aggregate size of 16 mm was applied. The prisms were castled horizontally in m
A special kind of curing to simulate the moisture condition of mass concrete was achieved 
a three layer system of protection against desiccation (further denoted as sealed specimen)
mens termed as unsealed were simply stored in a climatic chamber at a relative humidity of
temperature of 20 °C immediately after demoulding representing the moisture condition
concrete members without proper curing. The compressive strength determined at a concr
days showed a medium value of fc = 50.5 MPa in the case of NSC and fc = 
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age of the concrete at testing was 280 days. To include the effect of the loading rate two different fre-
quencies were used ( eformation controlled tests the de-
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fig. 2 denoted as phase I) is characterised by an extensive increase of deformation (dδ/dN > 0; d2δ/d2N 
< 0). Phase II shows an approximately linear ascent meaning a constant value of the dδ/dN up to about 
0.8·N. Above a number of load cycles of about 0.8·N the deformations increase dramatically up to final 
failure (phase III). In general, the described shape of the δ-N curve could be observed for all 
investigated parameters (degree of load, curing conditions and frequency). The use of high strength 
concrete instead of normal strength concrete resulted in a shift of the cyclic creep curve to the higher 

1 Hz and 10 Hz) in the Wöhler tests. In the d
formation rates were 5 µm/s and 0.5 µm/s, respectively. The details may be found in [2]

ÖHLER TESTS 
e load controlled tests is shown in fig. 1, right.  
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Figure 1: Geometry of the notched prisms used in the investigation (left) and typica
deformation relation in a load-controlled cyclic tensile test (here: normal strength con

quency = 10 Hz, σupper = 0.9 · ftn, σlower = 0) 
 
As can be seen in fig. 1, right the deformation in the last few cycles before the final failu
over proportionally, which indicates a decreasing stiffness of concrete at this stage. By re
mean deformation (δm = ½·(δ(Fupper) + δ(Flower))) in Wöhler tests the relations shown in fig. 
be obtained. The increase of the deformation with increasing actual number of load cycles 
the number of load cycles at final failure – provide a so-called cyclic creep curve, which can
into three parts predominantly representing three phases of cracking, but also creep deform
phase of micro crack initiation and primal creep up to a number of cycles of approximate

deformation δ [µm]  



values of deformations. This effect can be drawn back mainly to higher absolute values o
load level for the same loading degree in the case 

f the upper 
of high strength concrete, which may lead to larger 

elastic deformations and a more pronounced primal creep.  

e prisms  

 right. The 
tic loops is 
gree of the 

ncy with regard to the curve shape. Similar to 
the urves ob ned for the deformations three phases can be identified, however, with the first 
phase ending already at a number of load cycles of about 0.05·N. The observed stiffness in the 
last e % less than the initial stiffness, which is proportional to the modulus of 
elas city he undamaged concrete at the first load cycle.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3:

in load-controlled cyclic tensile tests (Wöhler lines) 
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Figure 2:  Effect of the increasing number of load cycles on mean deformation (left) a
stiffness (right) as observed in load-controlled cyclic tensile tests on notched concret

 
The stiffness decrease with an increasing number of load cycles is shown in fig. 2,
method used for the calculation of the inclination of mean straight lines within hystere
leaned on [3]. Again, there is only a minor effect of the investigated parameters de
loads, concrete grade, curing conditions and freque
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If the above discussed mean straight lines of the two load cycles following each other a
the points of the upper and the lower load, they build an area characterising the dissip
in this state of cracking. The so obtained curves have nearly the same shape as the cu
deformations shown in fig. 2, left. Again we have the above 
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min al point δmin 

level Fmin = const. = 0 N. The deformation increment ∆δ 
was determined b tical crack ope ck opening at which no tensile 
stresses can be transmitted any more across the crack) defined from the monotonic tests by the desired 
number of load cycles to failure. As maximu ack opening in the monotonic case a constant value of 
wcr = 160 µm was chosen from the literature, see [4]. 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4:  Typical load-deformation relation (left) and deformation control procedure (right) in the 
deformation controlled tension tests 

rease in the early beginning and a continuously increase in the main part of the tests
the unstable crack growth immediately before the final failure occurs.  

If the results of the load controlled tensile tests are plotted in a stress-number of lo
at failure diagram the Wöhler lines shown in fig. 3 can be obtained. First, it is worth 
tioned that for two combinations of parameters – normal strength and high streng
prisms, both sealed and loaded with a frequency of 10 Hz – could bear more than 10 m
cycles without a final failure at a degree of load S = σupper /ft = 0.6. These specimens w
taken a monotonic deformation controlled uniaxial tensile test afterwards. The load-d
relations obtained from these monotonic tests showed similar characteristic mechanical
ture mechanical values as obtained in deformation controlled fatigue tests with a high
load cycles (see following section). This clearly supports the assumption of a constant f
for concrete as it is true e.g. for steel. With a glance at the Wöhler lines in fig. 3, which
lar slopes for the different parameters, it can be stated, that the freque

no significant effect on the fatigue behaviour of concrete in te
observation the effect of the concrete grade is reflected by the Wöhler line being more
the case of high strength concrete, which indicates its higher sensibility to fatigue. 
 

4  DEFORMATION CONTROLLED UNIAXIAL TENSILE TESTS 
In contrast to the Wöhler tests described in the previous section the deformation cont
tensile tests have been performed by a constant increment of the total deformation from cy
(i.e. ∆δ = dδ/dn = const., where n = number of load cycles), see fig. 4.  

When the preset value for the deformation ∆δ in the following cycle was 
specimen was unloaded until the lower reversal point δ  was attained. The lower revers
was defined as a function of the lower load 
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The main finding in the experiments is that for an increasing number of load cycles th
curves of the σ-δrelations differ significantly from the corresponding monotonic curve
left. Because of lower values of ftn for the fatigue tests with a high number of load cycles t
are below the curves for the monotonic tests and the tests with a low number of cycles 
steeper part of the stress-deformation relation. In the second, shallow part of the softenin
average curves for the cyclic tests are nearly congruent when a deformation of about 150 µm
reached. The curve for the monotonic loading is slightly higher at this deformation 
coincides with the curves for the cyclic loading at a deformation of about 350 µm. Th
decrease of the fracture energy GF with an increasing total number of load cycles, if t
defined as the area under the envelope curve. The mentioned obser

e envelope 
, see fig. 5, 
hese curves 
in the first, 
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e quite near 
independent 
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e induced by 

f deformations. The characteristic points from the cyclic creep curve in the Wöhler 
tests are transferred to the deformation controlled curve at the stress level of the Wöhler test (in fig. 5, 
right marked as dotted line). From this no agreement between the two approaches can be found 
which may be drawn back mainly to a different loading history prior to the achievement of the con-
sidered deformations.  

Fig. 5:  Stress-deformat
in Wöhler tests (left), and accessory detailed consideration (right) 

ssumption of a unique envelope curve for the fatigue beh
maintained especially for the case of high number of load cycles , see also [2, 5].  
 

5  COMPARISON OF THE TWO FATIGUE APPROACHES  
The following analysis is an attempt to compare the Wöhler tests in their characteristics w
formation-controlled uniaxial tensile tests as described in the previous sections. Fig. 5, l
the stress-deformation relations of monotonic and cyclic tests. In the case of cyclic tests o
velope curves are plotted for the sake of clearness. Additionally, the crack opening at final
marked by filled squares and triangles for different upper stresses, i.e. the measured def
the upper load in the last hysteretic loop sustained by the specimen in the Wöhler tests. 
seen from the figure the values of the crack opening at final failure in the Wöhler tests ar
the corresponding deformation measured in the deformation-controlled monotonic tests 
of the frequency, the concrete grade and the degree of load S. 
A more detailed glance at the deformations in fig. 5, right shows clearly that a failure crite
basis of deformations would be a rough and inaccurate approach with regard to the failur
a steady increase o
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The number of load cycles reached at the point B is different for both approaches as well 
Wöhler tests and nearly 5000 in the case of deformation-controlled fatigue tests: Chara
the stress level of the Wöhler test is never reached in the case of a deformation controll
higher numbers of load cycles. In contrast to the own observations Subramaniam et al.
both fatigue approaches at the point B on the basis of the well-known Two Parameter 
lowing [6] the marked points A, B and C are exactly on the monotonic stre
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6  SUMMARY AND CONCLUSIONS 
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