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ABSTRACT 

A new energy-based theory, Quantized Fracture Mechanics (QFM), is presented. In contrast to Linear Elastic 
Fracture Mechanics (LEFM) QFM has no restrictions on treating defects of any size and shape. An application for 
predicting the strength of defective nanotubes concludes the paper.  
 

INTRODUCTION 
Two classic treatments of Linear Elastic Fracture Mechanics (LEFM) are Griffith’s criterion [1], an 
energy-based method, and a method based on the stress-intensity factor [2]; as a matter of fact, they are 
equivalent [3]. Since LEFM can be applied only to “large” and perfectly sharp cracks, we choose to 
modify it, by accounting for the discontinuous nature of crack propagation and matter. 

 
QUANTIZED FRACTURE MECHANICS 
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the material. LEFM is summarized as [4]: 
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where W is the total potential energy and the pedex C denotes a critical condition for the crack 
propagation. We assume a quantization of Griffith’s criterion to account for discrete crack propagation, 
and thus in the continuum hypothesis, differentials are substituted with finite differences, i.e., ∆→d  
[5]. Accordingly:  
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. QFM assumes “dissipation energy” in quanta G AC∆  where  is the 

fracture quantum. Eqs. (1b) and (2b) are valid only for pure modes of crack propagation. For mixed 
modes, Eqs. (1a) and (2a) can in principle be applied; the crack should propagate in the direction (that 
at nanoscale could be quantized) that maximizes the energy release rate G (LEFM, [6]) or 
correspondingly  (QFM). Values for the stress intensity factors  are available [7] for the 

most interesting cases. QFM involves simply evaluating  according to Eq. (2b), which also 
allows the stability of the process to be predicted in an analytical way. We thus propose QFM as a 
useful method for studying the strength of solids containing any shape or size defects. The hypothesis 
on which QFM is based is simply on discrete crack propagation in a linear elastic continuum medium. 
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Finally we show that LEFM and Non Linear Fracture Mechanics (NLFM) are limit cases of 
QFM. In NLFM the material property G  is replaced by an ad hoc “material” resistance R (known as 

the R-curve) that increases, tending to , by increasing the crack length. NLFM can be summarized 
as [8]:  
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(Dynamic crack propagation is characterized by an excess of energy RG − , which is converted into 
kinetic energy.) Combining the conditions for crack propagation in Eq. (2a) and Eq. (3a), it follows 

that 
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the conditions for stability in Eq. (2a) and Eq. (3a) are equivalent if AGAG dd≡∆∆  and 

ARAR dd≡∆∆ . It corresponds to a second-order expansion of W, i.e., 
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approximation of QFM (i.e., I order QFM LEFM), and to Eq. (3a) at the second order 
approximation of QFM (i.e., II order QFM→NLFM), so that the equation of the R-curve in our 
treatment becomes:  
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Thus, QFM clarifies and quantifies in a very simple way the meaning of the R-curve (and why it must 
be expected a function of the geometry and, as a consequence, not a material property!).  

In the context of discrete approaches, we have to note that Seweryn [9] proposed a similar non-
local approach based on energy, but without reaching our final analytical result; it formulation is 



complex also to be treated numerically. On the other hand, Novozhilov [10] proposed a simple discrete 
approach but based on stresses: not the maximum stress but its mean value along a fracture quantum 
becomes critical during fracture propagation; it can be considered the QFM stress analog. Similarly, 
the QFM strain analog has been also proposed [5].  
 

THE EXAMPLE OF THE GRIFFITH’S CASE 
Consider Griffith’s case of a linear elastic infinite plate in tension, of uniform thickness t, with a crack 
of length 2l orthogonal to the applied far field (crack opening Mode I). The material is described by the 
fracture toughness  and by the fracture quantum at the considered size-scale For LEFM and QFM 
the predictions of the failure stresses are respectively:  
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From Eq. (4), ( )222 CICKa πσ≈ , with  material strength at the considered size scale.   Cσ

For Griffith’s case, brittle crack propagation is predicted to be unstable for both LEFM and 
QFM theories, i.e., 
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Eq. (3b) to this case, we find the R-curve as: ( )laGR IC 21+= , exactly of the expected form [8].  
Extending the QFM result from sharp to blunt-cracks (using the asymptotic correction for the 

stress-intensity factor derived in [12]), we find: 
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where ρ  is the tip radius and ( )0,0 === ρσσ lfC  (coincident with the ideal strength at 

nanoscale). Note that, if the continuum hypothesis is made ( 0, →ρala ), Eq. (5) yields 
practically the same result as the classical tensional approach (maximum stress equal to material 
strength) coupled with Elasticity, for which the stress concentration fC σσ  is 

ρρ l221 ≈+ l  (small radii). On the other hand, Eq. (5) reduces to the correct prediction of 
QFM for a sharp crack. Thus, Eq. (5) represents the link between concentration and intensification 
factors.  
 

AN APPLICATION FOR PREDICTING THE FRACTURE STRENGTH OF DEFECTIVE 
NANOTUBES 

A pioneer experimental work on strength and fracture of nanotubes is reported in [13]. The tensile 
strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a nanostressing 
stage composed by two opposing atomic force microscope (AFM) tips, Fig. 1a,b, and located within a 



scanning electron microscope (SEM). The tensile experiment was prepared and observed entirely 
within the microscope and was recorded on video until fracture. The sum of the fragment lengths, Fig. 
1c, far exceeded the original nanotube length. This apparent discrepancy was explained by a sword-in-
sheath type fracture mechanism, similar to that observed in carbon fibers, i.e., the MWCNTs broke in 
the outermost layer. The tensile and fracture strength of this layer ranged from 11 to 63 GPa for the set 
of 19 MWCNTs that were loaded (in particular, values of 63, 43, 39, 37, 37, 35, 34, 28, 26, 24, 24, 21, 
20, 20, 19, 18, 18, 12, 11 GPa were measured). Analysis of the stress-strain curves for individual 
MWCNTs indicated that the Young’s modulus E of the outermost layer varied from 270 to 950 GPa. 
Transmission electron microscopic (TEM) examination of the broken nanotube fragments revealed a 
variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse, Fig. 1d,e. 
 

 
(a) (b) (c)  

 
(d) 

(e) 

Figure 1: Experiments [13] on fracture strength of nanotubes.  
 

The experimental results on nanotubes [13] show distinct clusters about a series of decreasing 
values of strength, with the maximum 63GPa, and the other values “quantized” at 43, 36-37, 25-26, 
19-20 and 11-12GPa. The measured strength of 63GPa is not in agreement with the ideal tensile 
strength of small diameter carbon nanotubes (CNTs), recently obtained with density functional theory 
(DFT, [14], around one hundred GPa). The observed strength quantization could be related to the 
quantization in the size of the defects. For example, assuming defects like adjacent vacancies 
( a≈ρ2 , where we assume for the fracture quantum the distance between two adjacent broken 

chemical bonds, i.e., 03ra ≈
nal =

(

, with , interatomic length, see Table 1), the crack length 

in Eq. (5) must be 2  with n integer number (non integer values of n thus represent forbidden 
bands for the strength related to the type of defect and structure considered); accordingly, the strength 
is predicted to follow a 
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) 21−n1+  dependence. With 115 GPa for  [14], the measured value of 
63GPa is fit with n=3 and the next highest experimental value of 43GPa is fit with n=8, and so on. 
Note that these 19 outer shells, of different dimensions, were composed of between 4 and 54 million 
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atoms, thus also large defects are likely. It appears that none of the 19 MWCNTs had defect-free outer 
shells.  

We now compare QFM with molecular mechanics (MM) and dynamics (MD) simulations. The 
simulations ([15]; MM, 0K) on a large diameter zig-zag (80,0) CNT, which has a diameter of 6.3nm, 
treated the reduction in strength due to missing pairs of carbon atoms. In the simulations, an n-atom 
defect was created by removing n adjacent atoms along the circumference of the nanotube; 2-, 4-, 6-, 
and 8-atom defects were treated. The comparison between these MM simulations and Eq. (5) (we thus 
neglect here boundary effects) is summarized in Table 1; the MM-calculated strengths clearly follow 
the ( ) 211 −+ n dependence predicted by QFM with a fit of 11121 =+ aC ρσ

0.28.0 ≈≈ aρ

GPa. Molecular 
dynamics simulations confirms the same trend [16]. For the value of the ideal strength calculated in 

[15], , and thus it gives the reasonable value of . Note that in 
addition, this comparison represents an alternative (even if qualitatively similar) scenario for 
understanding the experimental evidence [13] (measured strengths of 63 and 43 GPa, and so on).
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Different kinds of defects, as holes, might be more stable than crack-like defects at the 
nanoscale [17, 18]. Nanotubes with “pinhole” defects, involving removal of 6 (defect m=1) or 24 
(defect m=2) carbon atoms have been recently investigated in a (10, 10) nanotube by MD simulation 
[17]. We here investigate also larger values of m where the next larger hole is generated from the 
previous one by removing the “next perimeter” of carbon atoms (m=3, 56 atoms removed; m=4, 96 
atoms removed; m=5, 150 atoms removed; m=6, 216 atoms removed, see Table 2). From the stress-
intensity factor at the tip of a crack emanating from an hole [7] QFM (with 03r≈a , Eq. (5)), yields 
the results reported in Table 2 and compared with ab-initio and MD simulations [18]. Note in addition 
that in [18] strength reductions due to one vacancy by factors of 0.81 for (10,0) and 0.74 for (5,5) 
nanotubes are again close to our QFM-based prediction, that yields 0.79.  

We finally note that assuming an ideal strength for the MWCNTs experimentally investigated 
[13] of 93.5GPa, as computed in [15], the corresponding strength for a pinhole m=1 defect is 64GPa 
(against the measured value of 63GPa), for an m=2 defect is 45GPa (against the measured value of 43 
GPa) and for an m=3 defect is 39 GPa (as the measured value), and so on. This could represent another 
plausible scenario compared to the assumed linear defects that were discussed above. 
 

Strength [GPa] n=2 n=4 n=6 n=8 
MM - (80,0) 64.1 50.3 42.1 36.9 

QFM  64.1 49.6 42.0 37.0   
Table 1: MM [15] and QFM comparison on fracture strength of nanotubes with n adjacent vacancies 

 (the graph reports the example of n=2, the applied load is vertical). 
 

Cσσ  m=1 m=2 m=3 m=4 m=5 m=6 

QFM 0.68 0.48 0.42 0.39 0.37 0.36 
MD - (50,0)  0.64 0.51 0.44 0.40 0.37 0.34 

MD - (100,0)  0.65 0.53 0.47 0.43 0.41 0.39  
Table 2: MD [18] and QFM comparison on fracture strength of nanotubes with holes of size m 

(the graph reports the example of m=1). 
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