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ABSTRACT
Two decades ago, Alexander Chudnovsky proposed a physics-based model for the process zone
surrounding the tip of a slowly propagating crack, which conspicuously improves on the phenomen-
ological Dugdale-Barenblatt model (Chudnovsky [1,2]). In the following years, that model was
successfully applied—under drastic simplifying hypotheses—by Chudnovsky and coworkers (Huang
et al. [3], Stojimirovic et al. [4], Chudnovsky et al. [5], Wen et al. [6]). Recent advances in
configurational mechanics (DiCarlo & Quiligotti [7], DiCarlo [8,12], DiCarlo et al. [9–11]) make
it now possible to develop Chudnovsky’s model into a full-fledged field theory, freeing it from all
simplistic hypotheses.

1 INTRODUCTION
On organizers’ request, this extended abstract is being written ten months in advance with
respect to the real thing. Since I intend to present fresh, unpublished results at the Confer-
ence, I give the present text the structure of a research project, announcing my results and
explaining why and how I am confident to obtain them in due time.

The next section provides a résumé of the theory of bulk growth set forth by DiCarlo &
Quiligotti [7]. Being quite long, it is subdivided into three subsections, devoted to kinemat-
ics, dynamics and constitutive theory, respectively. Any continuum theory of growth—be it
modelled as spread in bulk or concentrated on surfaces—hinges on three key issues: in kin-
ematics, extra degrees of freedom have to be introduced, in order to distinguish growth from
deformation; in dynamics, new balance laws have to be provided, apt to govern the evolu-
tion of such degrees of freedom; in constitutive theory, well-founded extensions of the basic
principles (material indifference and dissipation) have to be conceived, and fit constitutive
classes have to be selected and analyzed.

To the best of my knowledge, the theory in DiCarlo & Quiligotti [7] is the only one
where the evolution law for bulk growth is obtained as a constitutively augmented balance
(so achieving—with different and more comprehensive means—what Gurtin [13] had accom-
plished for surface growth). That theory—while constituting the fundamental basis of the
present effort—needs to be extended in a nontrivial way to cope with the peculiar phenom-
ena occurring in the process zone. Such extensions are briefly discussed in the short closing
section.

2 A CONTINUUM THEORY OF BULK REMODELLING
The growing bodies considered by DiCarlo & Quiligotti [7] are standard Cauchy continua:
the only kinematic descriptor ascribed to their points is place in ordinary physical space. In
the present context, I shall have to add a tensorial microstructure and the corresponding
dynamical quantities: see Sect. 3. In order to distinguish growth from deformation, two
evolving configurations are associated with each body element: its visible configuration,
describing how it is actually placed in space, and its relaxed configuration, describing how



it “would like” to be placed, that is, how it would be placed if all of its line elements had
their (current) relaxed length. The field of relaxed configurations need not be (and usually
is not) compatible, not even locally.

This is an old kinematic idea, primarily introduced to distinguish between elastic and
viscoplastic strains by Kröner [14] and Lee [15], and much later imported into growth mod-
elling by Rodriguez et al. [16] (see also Taber [17]). The original contribution by DiCarlo
and Quiligotti [7] is in dynamics. As summarized in the following, they obtain the evol-
ution law for bulk remodelling as a constitutively augmented new balance, the balance of
configurational (or remodelling) couples, independent of the standard force balance.

2.1 Kinematics

I regard a body as a smooth manifold B (with boundary ∂B), and call placement any
smooth embedding

p : B → E (1)

of the body into the Euclidean place manifold E , whose translation space will be denoted
by VE . Tangent vectors on the body manifold itself are called line elements. The set of all
line elements attached to a single body-point b ∈ B is called the body element at b, and
denoted TbB (the tangent space to B at b). The union of all body elements is denoted TB
(the tangent bundle of B).

The body gradient ∇p of a placement p is a tensor field on B, whose value at any
given point b, denoted by ∇p|b, maps linearly the body element TbB onto VE . I call stance
any tensor field of this kind, be it a gradient or not. Therefore, a stance is any smooth
mapping

P : TB → VE , (2)

such that the restriction P|TbB is a linear embedding, for all b ∈ B. If a stance happens to
be the gradient of a placement, I say that it is induced by that placement: all placement
induces a stance, but a general stance is not induced by any placement, not even locally.
Growth is the time evolution of the relaxed stance P, just as motion is the time evolution
of the actual placement p .

The complete motion of a growing body is a family of pairs (p,P) smoothly paramet-
rized by the time line T (identified with the real line), and the velocity realized along that
motion at the time τ ∈ T is the pair of fields (a superposed dot denoting time differentiation):

( ṗ(τ), Ṗ(τ)P(τ)−1) : B → VE×(VE⊗VE) . (3)

The linear space of test velocities T , comprising all smooth fields

(v,V ) : B → VE×(VE⊗VE) , (4)

will play a central role in the next subsection. The visible velocity of body-points (with
physical dimensions length/time) is given by the vector field v, while the tensor field V
gives the growth velocity of the corresponding body elements (with physical dimensions
1/time).



2.2 Dynamics

A force is primarily a continuous linear real-valued functional on the space of test velocities,
whose value is the working expended by that force. DiCarlo & Quiligotti [7] assume that
the total working expended on any test velocity (v,V ) ∈ T admits the following integral
representation:∫

B
− ( s · v + C · V + S ·Dv ) +

∫
B

( b · v + B · V ) +
∫

∂B
t

∂B · v , (5)

where the integrals are taken with respect to the relaxed volume and surface area of body
elements, and D denotes the relaxed gradient:

Dv := (∇v)P−1 . (6)

Because of the compound structure of test velocities (4), the force functional splits
additively into a brute force, dual to v, and a remodelling force, dual to V. Another
important splitting is between the inner working, given by the first bulk integral in eqn
(5), and the outer working, given by the remaining sum. The brute self-force per unit
volume s, the outer brute bulk-force per unit volume b, and the brute boundary-force
per unit area t

∂B take values in VE ; the remodelling self-couple per unit volume C , the
brute Piola stress S (also a specific couple!), and the outer remodelling couple per
unit volume B take values in VE⊗VE .

All balance laws are systematically provided by the principle of null working: the
total working expended on any test velocity should be zero, i.e., the total force should be
the null functional. Skipping the balance of brute forces, which is standard, I present here
only the balance of remodelling couples:

−C + B = 0 on B . (7)

2.3 Constitutive theory

My treatment of constitutive issues rests on two pillars (altogether independent of balance):
the principle of material indifference to change in observer, and the dissipation principle.
Both of them deliver strict selection rules on the constitutive prescription for the inner force.
Such a priori restrictions do not apply to the outer force, which is regarded as an adjustable
control on the process. In the intented application to ductile fracture, B will be trivial—once
the theory is extended to include thermo-mechanics.

I will only flash the outcome of the first principle, as applied by DiCarlo & Quiligotti
[7], while summarizing with some more detail the machinery of the second one. Material
indifference rules out non-trivial values of the brute self-force s and non-symmetric values
of the Cauchy stress T := |det F|−1 S F>, where the warp

F := Dp = (∇p) P−1. (8)

measures how the actual stance, i.e., the body gradient of the actual placement, differs from
the relaxed stance. If we further assume that the response of the body element at b filters off
from (p,P) all information other than p|b, ∇p|b, and P|b, we obtain from the same principle
that

S(b, τ) = R(b, τ) Šb(U|b,P|b, τ) , C(b, τ) = Čb(U|b,P|b, τ) , (9)



the rotation R and the stretch U being, respectively, the orthogonal and the right positive-
symmetric factor of the warp (8): F = R U .

To have a notion of dissipation, an additional energetic descriptor is needed. I postulate
the existence of an additive real-valued free energy Ψ(P) =

∫
P ψ , measuring the inner energy

available to body-parts. I call power expended along a process at time τ the opposite of the
working expended by the inner force due to the process on the velocity realized at time
τ . Hence, the power expended measures the working done by an outer force balanced with
the constitutively determined inner force. The dissipation principle I enforce requires
that the rate of energy dissipation—defined as the difference between the power expended
along a process and the time derivative of the free energy—should be non-negative, for all
body-parts, at all times. This localizes into:

ψ̇ ≤ S ·Dv + C · V , (10)

it being intended that v and V are given by eqn (3), S and C by eqn (9), and ψ has to be
related to the process by an extra constitutive mapping. The main constitutive assump-
tion of DiCarlo & Quiligotti [7] selects a special constitutive class, beautifully accounted
for by Epstein [18]. This constitutive class, however interesting and worth consideration, is
too narrow for the intented application: here is another point where the theory needs being
generalized—incorporating ideas from DiCarlo et al. [10,11]—, to account for progressive
damage in the process zone. In fact, Epstein [18] and DiCarlo & Quiligotti [7] posit that, at
each body-point, the present value of the free energy per unit relaxed volume depends only
on the present value of the warp at that point:

ψ(b, τ) = ψ̌b (F(b, τ)) . (11)

The requirement that inequality (10) be satisfied along all processes is fulfilled if and only
if for each b (which will be dropped from now on) the responses Š and Č satisfy (∂ denotes
differentiation and I the identity on VE):

Š = ∂ψ̌ +
+

S , Č = E +
+

C , (12)

with
E := ψ̌ I− F>Š (13)

the Eshelby coupling between brute mechanics and remodelling, and the extra-energetic

responses
+

S ,
+

C restricted by the reduced dissipation inequality

+

S · Ḟ +
+

C · V ≥ 0 , (14)

to be abided by in the same sense as inequality (10). As is seen, the Eshelbian coupling
(13) is mandatory, within the constitutive class considered, and independent of any special
assumption on Š . Additional constitutive couplings are not ruled out, of course.

3 HOW TO MODEL CAVITATION AND CRAZING
A process zone, i.e., a zone of large deformation in the vicinity of the crack tip is observed
above the transition temperature from brittle to ductile mode of fracture. A microscopic
examination reveals that the process zone consists of dense cavitations and crazes that form
stripes, well visible on the millimeter scale. At a higher magnification, in the 10–100 µm



range, each individual stripe appears as a set of well aligned and connected cavities, that
a coarse-grained theory would describe collectively as a displacement discontinuity. On the
micrometer scale, a sponge-like structure of the cavities is observable with a high resolution
scanning electron microscope. A root cause of cavitation and crazing is micronecking, which
constitutes the major energy absorption mechanism within the process zone (Chudnovsky
& Preston [19]).

In the continuum theory I contemplate, the evolving distribution of cavitations and
crazes is modelled by endowing the body with a rich microstructure, consisting of two tensor
fields, V and A , representing voids per unit volume (Harrigan and Mann [20], Cowin et al.
[21], Aubouy et al. [22]) and void boundaries per unit volume (Wetzel and Tucker [23]),
respectively. The complete motion of the body and the corresponding velocities (3), (4) are
extended accordingly. In dynamics, the balance of remodelling couples (7) is supplemented
by two further micro-configurational balances, involving crazing couples, dual to V and A ,
respectively. With respect to eqn (11), the constitutive class under consideration is extended
assuming that

ψ(b, τ) = ψ̌b (F(b, τ),V(b, τ),A(b, τ)) , (15)

i.e., at each body-point, the present value of the free energy per unit relaxed volume ψ(b, τ)
depends not only on the present value of the warp F, but also on the present values of the
void tensor V and of the void-boundary tensor A at that point. In this constitutive class,
which is much larger than that defined by eqn (11), the Eshelbian coupling includes— but
is much richer than—that provided by eqn (13).
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(forthcoming).



11. DiCarlo A., Naili S., and Quiligotti S., Rotary remodelling of elasticity tensors in the
plane (forthcoming).

12. DiCarlo A., Material Remodelling (in preparation).

13. Gurtin M.E., Configurational Forces as Basic Concepts of Continuum Physics, Springer-
Verlag, Berlin (2000).
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