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ABSTRACT 

We investigate the interaction of a microcrack  and an inclusion in monocrystal β-SiC under plane strain 
loading condition. By means of molecular dynamics simulations we are able to represent properly the 
mechanical loads and to calculate the stress and strain fields when the distance of the microcrack and the 
inclusion is varied. When the crack-inclusion  distance is large respect to the dimension of the isolated defects 
our results are consistent with the basic results of the linear elastic fracture mechanics, and provide a deeper 
insight at the nanoscale. At small crack-inclusion distances the stress and strain fields  are not additive respect 
to the isolated microcrack and inclusion and we calculate such a defect of linearity. We find power law 
dependence of the stress and strain defect of linearity on the relative distance of the microcrack and the 
inclusion.  
 

1  INTRODUCTION 
Silicon carbide, as other ceramic materials, is attractive because of its physical and chemical 
properties such as high hardness, low density and high inertness. Nonetheless its structural 
applications still remain limited due to brittleness and low fracture thoughness. 

It has been proposed that the macroscopic fracture toughness may be increased by introducing 
in the ceramic matrix a distribution of hard fibers (fiber toughening). Toughening is the 
macroscopic result of complex mechanisms, such as crack deflection or fiber bridging  (Kuntz [1]). 
It is clear that the core problem is the interaction of the crack tip and the inclusion. According to 
the Linear Elastic Fracture Mechanics (LEFM), the stress at the crack tip is enhanced with respect 
to the remote loading value. The failure of the system is related to such stress intensification at the 
crack tip. When an inclusion is introduced into the system, the stress field at the crack tip is 
affected  and the previous picture has to be accordingly modified. A detailed understanding at the 
nanoscale of such effect is relevant to control the structural stability of the system and it is still 
missing. 

Molecular dynamics (MD) is a well established computational tool in materials science  
(Frenkel and Smit [2]). Once a reliable model for the interatomic forces is given, several  physical 
properties may be investigated by MD. Recently MD simulations have been successfully applied 
to study the nanomechanics of crystalline, non-crystalline, brittle, and plastic materials. 
Nanomechanics requires some methodological improvements respect to standard MD simulations 
to properly represent the loading condition at the nanoscale and to find a suitable definition of 
local stress and strain fields. 

Here we present an atomistic analysis of the interaction between a nanosized microcrack and 
an inclusion in monocrystal β-SiC considering both the case of hard and soft inclusion. We 
consider the diamond fiber as prototype of hard inclusion and silicon fiber as a prototype of soft 
inclusion. Hard inclusions have been chosen to be coherent respect to the matrix lattice structure. 
In fact it has been experimentally proved that coherent diamond inclusions with size of about 3 nm 



may form in monocrystal β-SiC by carbon implantation (Pecz [3]). We focus our investigation to 
parallel alignment between the two defects and consider extensively the case of stable microcrack.  

Such analysis is performed by studying  the stress and strain fields of a crack-inclusion pair 
and calculating the effect of the inclusion on the crack-induced stress field. Furthermore we 
explore the nonlinearity of the total stress field respect to the case of isolated microcrack and 
inclusion. Nonlinear correction to the stress field may be relevant close to the threshold of 
microcrack stability and are investigated in detail as a function of the distance between the defect. 

  
2  ATOMISTIC DESCRIPTION OF STRESS AND MECHANICAL LOAD  

The typical simulation cell is represented  in Fig. 1 and it consists in a thin slab containing 60480 
atoms of monocrystal SiC with zincblend structure (β-SiC). The x, y and z axis were aligned along 
the [11-2], [-110] and [111] orthogonal directions, respectively. In the z direction the system was 
elongated in steps up to a tensile strain of 8% by means of the constant traction method (Cleri [4]). 
In the x-y plane the system was kept at the equilibrium lattice parameter of β-SiC and periodically 
repeated. 

 
Figure 1: Geometry, orientation, crystal structure, and dimension of the simulation cell. Both the 

microcrack (C) and the cylindrical inclusion (I) are shown as well. 
 
 
This geometry corresponds to the plane strain border conditions of continuum mechanics. 

Molecular dynamics simulations are based on Tersoff potential (Tersoff [5]) that properly 
describes thermomechanical properties of β-SiC (Tang [6]). Furthermore, the Tersoff potential is 
able to reproduce the brittle failure of silicon carbide under tensile load. 

The stress tensor σαβ of a system at T=0 K is in principle defined as: σαβ=V-1dU/dεab where U 
is the internal energy of the system and εab is the strain tensor for the cartesian coordinates α and 
β. Within the Tersoff force model it is possible to cast the energy U of the system into a sum of 
single-site energies νi; namely  U=Σiνi. Similarly we get an expression for the tensor σαβ in 



terms of atomic stresses σαβ,i once we attribute to any atom the same volume. For any pair i-j 
interacting atoms we calculate the average atomic stress ½( σαβ,i+σαβ,j) and we attribute it to the 
average atomic position of the selected i-j pair. Accordingly to the plane strain border condition 
the dependence of stress and strain fields on y direction may be ignored and as a result we 
calculate the stress tensor σαβ(x,z) in the x-z plane. Further details about the method and atomistic 
definition of stress may be found elsewhere (Mattoni [7]). 

     To validate present definition of local stress let us consider the case of an isolated and 
stable (111) microcrack of semi-length a =1.8 nm and center (xC,zC). The microcrack was obtained 
by cutting a number of bonds accross a shuffle plane (111) in strained β-SiC (at 8% of tensile 
stress). In response to the applied load the microcrack turns into an elliptical Griffith-like hole 

(Griffith [8]). 

 
Figure 2: Left panel is the iso-stress contour plot (units of eVÅ-3) for the isolated microcrack in 

strained β-SiC (8%). Only a 14 nm × 8 nm large portion of the system is represented. 
Right panel represents the stress component σzz

C(X) as a function of the distance in 
reduced units (X= (x-xC)/a ) from the crack tip. 

 
 
In Fig. 2 (left panel) a contour map of the stress is represented in the x -  plane showing the 

formation of two tensile lobes that extends outwards from the crack tips in agreement with the 
stress enhancement at the crack tips predicted by elementary models of fracture mechanics 

(Broberg [9]). The agreement is also quantitative; in the right panel of Fig. 2 the stress component 
σzz

C(X) calculated along a horizonal line from the right crack tip has been fitted by the analytical 
stress curve of the Inglis model (Broberg [6]). 

z

     The diamond inclusion was obtained by selecting a cylindrical region with axis parallel to 
 direction, center (xI,zI) and radius R=1 nm and replacing its silicon atoms with the same 

number of carbon atoms. No defects formed at the interface matrix/diamond in agreement with 
experiments. 

y



 
Figure 3: Left panel is the iso-stress contour plot (units of eVÅ-3) for the isolated diamond 

inclusion in strained β-SiC (8%). Only a 14 nm × 8 nm large portion of the system is 
represented. Right panel represents the stress component σzz

I(Z) as a function of the 
distance in reduced units Z=(z-zI)/R  from the inclusion in unstrained β-SiC. 

 
 
A map of the stress σzz

I(x,z) for strained β-SiC (8%) is represented in Fig. 3 (left panel). The 
C-C bonds are smaller than the SiC bonds and pull them in the [111] direction; as a result two 
tensile lobes form along the z direction. In the right panel of  Fig. 3 we plot the zz stress 
component σzz

I(Z) calculated along a vertical line starting at the center of the inclusion in the case 
of unstrained β-SiC. Data are well fitted by the 1/z2 asymptotic behavior predicted by the 
continuum elasticity (Eshelby [10]). 
 

3 INTERACTION BETWEEN THE MICROCRACK AND THE HARD INCLUSION 
The map of stress for strained β-SiC (εzz=8%) when the microcrack and the inclusion are both 
present in monocrystal β-SiC is represented in the left panel of Fig. 4. The relative distance is 5.5 
nm. The lobe of the highest tensile stress at the right tip of the microcrack is made smaller by the 
compressive lobe of the inclusion. In other words tensile and compressive stress tend to 
compensate and the β-SiC matrix turns out to be toughened by the diamond fiber. Let σzz

CI(x) be 
the stress calculated along a horizontal line when both the defects are present. The line is chosen to 
pass through the defect centers. We name it total stress for the crack-inclusion (CI) pair and we 
represent it in the right panel of Fig. 4. We can compare the total stress with that one calculated in 
a system containing just one microcrack or just one inclusion at the same strain and accordingly 
define Defect Of Linearity (DOL) of the zz component of the stress: 
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where σzz
∞ is the uniform stress background due to the external load. According to the present 

atomistic simulations, σnl
CI(x) turns out to depend on the relative distance between the defects. If 

we rescale profiles corresponding to different distances so that the height  of the peaks at the right 



crack tip are the same we find the result reported in right panel of Fig. 5. 
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Figure 4: Left panel is Iso-stress contour plot (units of eVÅ-3) for a crack-inclusion pair in strained 
β-SiC (  =8%). Only a 18 nm × 10 nm large region of the system is represented. 
Right panel represents zz component of the total stress σzz

CI(x) showing the stress 
intensification at the crack tips. 

 
We can conclude that, once rescaled, the DOL's corresponding to different relative CI distances 
are qualitatively similar. Furthermore the behaviour of DOL of the stress is represented by a 
function vanishing everywhere, but for two rather localized regions corresponding to the positions 
of the microcrack and the inclusion. We can extend our analysis to the strain field as well. 
Introducing now the DOL of zx component of strain εnl

CI(x)   

                       (2) 
we get the result shown in the left panel of  Fig. 5, corresponding to four different relative 
distances between the microcrack and inclusion after rescaling. The scaling factors depend on the 
relative distance s(|XC-XI|) according to a power law with exponent -2.  
 

4  CONCLUSIONS 
The total stress and strain fields show to be non additive and the appropriate DOL's for stress, 
σnl

CI(x) and for strain εnl
CI(x), have been computed. Though in principle DOL's could have a 

complicated dependence on the relative distance between the microcrack and the inclusion, we 
found that they obey a simple scaling law. We therefore propose the following model for the total 
stress field of a interacting pair consisting in a microcrack and in a hard inclusion: 

         (3) 
where gC(X-XC) and gI(X-XI) are two suitable functions localized at the microcrack and at the 
inclusion, respectively. Similar expression is valid for strain components, as well. 
 



 
Figure 5: εnl

CI(x) (left panel) and σnl
CI(x) (right panel) profiles corresponding to four relative 

distances between the microcrack and the inclusion (see text). 
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