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ABSTRACT 

The transition from continuous to discontinuous failure modes during the dynamic failure evolution can be 
identified by performing discontinuous bifurcation analysis. As can be found from the open literature, how-
ever, a continuum tangent stiffness tensor has not been formulated for coupled rate-dependent plasticity and 
damage in model-based simulation of dynamic fracture and damage events. Based on the previous work [1,2], 
a thermodynamically consistent framework is established in this study for coupled rate-dependent plasticity 
and damage models, via which rate-dependent Drucker-Prager plasticity coupled with isotropic damage is 
formulated with model parameters being calibrated from SHPB (Split Hopkins Pressure Bar) experiments. To 
identify the transition from continuous to discontinuous failure modes, discontinuous bifurcation analysis is 
performed based on the rate-dependent continuum tangent stiffness tensor that is derived from the coupled 
plasticity/damage model. To develop a robust model-based simulation procedure, a geometric criterion with a 
corresponding solution scheme is presented to investigate the localized failure condition in the Mohr coordi-
nates. According to the experimental data available, the uniaxial compressive loading path is considered to il-
lustrate the loading rate effect on the critical localization orientation and hardening parameters. It is shown 
that the higher the loading rate, the later discontinuous bifurcation would occur in the loading path. It appears 
from this study that the coupled rate-dependent plasticity/damage model could be combined with a decohe-
sion model for multi-scale simulation of failure evolution involving different degrees of discontinuity, with-
out invoking higher-order spatial terms in the stress-strain space. 
 

1  INTRODUCTION  
In contrast to the dominance of microcracking in tension [1], quasi-brittle solids under impact 
loading exhibit a drastically different behavior in compression, for which two dominant modes of 
irreversible changes, i.e., plastic flow and microcracks, exist. It requires a coupled rate-dependent 
plasticity and damage model. However, the boundary value problem for a local continuum of 
strain-softening features becomes ill-conditioned resulting in instabilities. As can be found from 
the open literature, two different kinds of approaches have been proposed over the last twenty 
years to model and simulate the evolution of localized material failure, namely, continuous and 
discontinuous ones. Smeared crack approach, non-local models, viscous or gradient regularized 
models, etc. are among the continuous approaches proposed to regularize the localization prob-
lems, in which the higher order terms in space and/or time are introduced into the stress-strain rela-
tions so that the mathematical model is well-posed in a higher order sense for given boundary 
and/or initial data. On the other hand, decohesion and fracture mechanics models are representa-
tive of discontinuous approaches, in which strong discontinuities are introduced into a continuum 
body such that the governing differential equation is well posed for given boundary and/or initial 
data. Since the discontinuous bifurcation identifies the transition from continuous to discontinuous 
failure modes [2-4, among others], it appears that a combined rate-dependent local dam-
age/plasticity and decohesion approach could be sound in physics and efficient in computation. 
However, it is necessary to find an efficient way to determine the critical hardening parameters 
and critical localization orientations with the discontinuous bifurcation analysis. The key to per-
form the discontinuous bifurcation analysis is to formulate an acoustic tensor, which is obtained by 
contracting the continuum tangent stiffness tensor with the normal vector of eventual localization 
band [5]. With the aid of a very attractive geometric representation of the localization condition in 



the Mohr strain/stress coordinates, the missing information on the transition between failure modes 
of different discontinuities and the type of material failure could be obtained without using a tedi-
ous numerical algorithm [6-8]. 

In this paper, a continuum tangent stiffness tensor for the rate-dependent Drucker-Prager plas-
ticity coupled with isotropic damage is introduced first. In order to bridge the gap between rate-
dependent continuous and discontinuous failure modes in impact problems, a geometric criterion 
in the Mohr coordinates is presented next to investigate the localized failure condition for the cou-
pled rate-dependent plasticity and damage model. For the purpose of illustration, the loading rate 
effect on the critical localization orientation and critical hardening parameters is studied for uniax-
ial compressive loading path with model parameters being calibrated from SHPB (Split Hopkins 
Pressure Bar) experiments. Conclusions are given in the final section. 

 
2  A COUPLED RATE-DEPENDENT  PLASTICITY AND DAMAGE MODEL 

With the use of the “equivalent strain principle” and “effective stress principle”, a thermodynami-
cally consistent framework for a coupled rate-dependent plasticity and damage model has been de-
veloped for quasi-brittle materials under impact loading, with a focus on compressive responses. 
The “effective-stress” is the essential mechanism by which theories of elastoplasticity are coupled 
with damage theories. In the “effective-stress” space σ , the fourth-order stiffness tensor ˆ

eεσΕ ∂∂≡ ˆe  with  being truly elastic strain. In the actual stress space , the fourth order stiff-
ness tensor 
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ee εΕ ∂≡ˆ σ ∂  and damage related stress tensor d∂−∂≡ σβ  with  being a scalar dam-

age variable. By introducing the suitable yield function 
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Φ  and the dissipative potential Φ , the 
continuum tangent stiffness tensor can be derived as 
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 with  being the ith component of the principal strain tensor and iε
+x being the positive part of x .  
As a special case of the general theory, consider a rate-dependent Drucker-Prager plasticity 

model coupled with isotropic damage. Here the yield function is defined as 
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with η  being the strain rate sensitivity function, yσ  the yield strength under quasi-static uniaxial 
compressive loading, K  the hardening stress, and α  the coefficient of pressure effect. Notice that 
in Eqn (2) the equivalent effective stress sssσ ˆ:ˆˆˆˆˆ 2
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By introducing , the stiffness tensor in the actual stress space becomes ( )σσ ˆ1 d−=
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where υ  is Poisson’s ratio that is taken to be rate-independent. Finally  is defined as β
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With the use of the above equations, it follows from Eqn (1) that the continuum tangent stiff-
ness tensor takes the form of  
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for the rate-dependent Drucker-Prager plasticity coupled with isotropic damage. 
 

3  GEOMETRICAL LOCALIZATION ANALYSIS IN THREE DIMENSIONS 
Once the tangent operators for quasi-brittle materials are established, failure in the small, that is, 
failure at the constitutive level, may be analyzed. The possibility of jumps in the velocity field is 
detected by the singularity of the acoustic tensor. Assuming plastic-damage loading persists on 
both sides of the discontinuity surface, the acoustic tensor for the coupled rate-dependent plasticity 
and damage model can be obtained by contracting the continuum tangent stiffness tensor  
given by Eqn (8) with the vector n  normal to the discontinuity surface, namely, 
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where the pre-conditioner  denotes the acoustic tensor of linear elasto-damage. The 
so-called traction vectors of elastoplastic-damage bifurcation in Eqn (9) are a  and 
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develop in the form of jumps in the velocity field. 
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In r to analyze the bifurcation condition, we form the generalized eigenvalue problem 
as proposed by Ottosen and Runesson [5]. It can be found that 
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*eˆwhere ( ) ( ) ( ) ( )nanPnan ⋅⋅=Y  with ( ) ( ) 1ˆˆ −
= ee QnP . In other words, the bifurcation condition Eqn 

(10) takes the form of  
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which provides the critical hardening modulus critH  at incipient localization as H   reaches the 
maximum value for all possible orientations ( )θnn = .  
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From Eqns (5-7), the traction vector  reads a
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In the case of isotropic damage, the elasto-damage acoustic tensor  and its inverse may be 
evaluated analytically as follows: 
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with nnδnIn ⊗+=⋅⋅ 2124 , and the inverse of  from Eqn (14) takes the form of eQ̂
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Thus the hardening modulus can be found from Eqn (11) as 
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Because of 33 11 II N −=−⋅⋅=⋅⋅ σnσnnsn and ( ) ( ) ( )22 nsnnsns ⋅⋅+=⋅⋅⋅ Nτ , we may recast the local-
ization condition Eqn (16) with Eqns (4-5), (12-13), and (15) into 
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ellipse in the NN  space of Otto Mohr [8].  τσ −

For a given stress state, we can evaluate the Mohr components Nσ  and Nτ  in order to check the 
bifurcation condition, Eqn (17), via the Mohr envelope concept [8]. Let the principal stress circle 
be represented by 

( ) 222 RNcN =+− τσσ , (18) 
where the radius ( ) 231 σσ −=R  with 321 σσσ ≥≥ , and the center ( ) 231 σσσ +=c . The critical 
hardening parameter critH  and the critical failure angle  can then be obtained when the major 
principal circle of stress osculates the localization ellipse, namely, by solving Eqns (17) and (18) 
simultaneously. This yields the critical failure angle as 
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Correspondingly, the bifurcation may take place when the hardening modulus reaches the critical 
value, namely,  
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4  GEOMETRICAL SOLUTION UNDER UNIAXIAL COMPRESSIVE STRESS 

In the previous section, a generalized geometrical solution for localization in three dimensions has 
been derived based on the continuum tangent stiffness tensor for coupled rate-dependent Drucker-
Prager plasticity with isotropic damage. Let us now consider the relations that are related to the 
uniaxial compressive stress state, which is defined by 02211 ==σσ  and 033 <σ . For this case, the 



radius 233σ−=R  and the center of the Mohr circle 233σσ =c . Under the uniaxial compressive 
loading path, the difference between H  from the actual stress state and critH  from Eqn (20) is 
checked at each time step. If tol≤HH cri− , a small positive tolerance parameter, then bifurcation 
occurs, compute the critical failure angle from Eqn (19); otherwise, continue to next step. 

eQ̂det

Table 1: Critical Localization Parameters
strain rate 290 /s 620 /s 1050 /s 1500 /s 
bifurcation point 
(σ33) 

-37.96 (MPa) -19.24 (MPa) -9.60 (MPa) -7.22 (MPa) 

failure angle 41.6° 41.6° 41.6° 41.6° 
damage 0.31 0.75 0.91 0.96 
     

With the above procedure, we examine the failure modes involved in the SHPB laboratory ex-
periments as simulated in [9]. Table 1 shows the critical localization parameters under different 
strain rates along the uniaxial compressive loading path. Figure 1 depicts geometrical contact con-
ditions between the localization ellipse and the major stress circle of Mohr at the strain rate of 
620/s. As can be seen, localization occurs only if the material exhibits damage. With the increase 
of strain rate, the bifurcation point falls deeper in the post peak regime. It is interesting to note that 
the failure angles under different strain rates are constant for the coupled rate-dependent plasticity 
and damage model, which is consistent with the previous study using a rate-independent Drucker-
Prager plasticity model combined with a rate-dependent tensile damage model [3]. To verify the 
analytical results, a numerical bifurcation study is performed at the constitutive level. As shown in 
Fig. 2, the localization diagram plots the normalized determinant epQ̂det  for in-plane fail-
ure angles ranging from °<<° 1800 θ  at the strain rate of 620 /s. The zero values of the normalized 
localization determinant verify the analytical/geometrical localization results using the Mohr enve-
lope concept. 
 

5  CONCLUSIONS 
In this paper, a generalized geometric criterion with a corresponding solution scheme is pre-

sented to investigate the localized failure conditions in the Mohr coordinates, based on the rate-
dependent continuum tangent stiffness tensor for the coupled rate-dependent Drucker-Prager plas-
ticity with isotropic damage. For the purpose of illustration, critical localization orientations and 
critical hardening parameters are studied for the uniaxial compressive stress loading path under 

Figure 1: Localization ellipse and Mohr’s circle for strain rate of 620/s. 



different strain rates. In contrast to the insensitivity of critical localization orientation to the strain 
rate, the strong loading rate effect on the bifurcation stress state is particularly noteworthy. To the 
author’s knowledge, it is the first time to find that the increase of loading rate would decrease the 
bifurcation point in the post-peak regime. By identifying the transition from continuous to discon-
tinuous failure modes, the coupled rate-dependent plasticity and damage model could be combined 
with a decohesion model for large-scale simulation of failure evolution without invoking higher-
order spatial terms in the stress-strain space. An integrated experimental, analytical and numerical 
effort is required to further verify the solution procedure proposed here. 
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Figure 2: Verification of the analytical bifurcation results at the strain rate of 620 /s. 
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