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ABSTRACT

An interaction integral method is described for extracting the T-stress distribution along the fronts of general,
non-planar cracks in three dimensions. The three-dimensional auxiliary fields that are required in the method
are defined by extruding two-dimensional fields along the three-dimensional crack front. The two-dimensional
fields are those associated with a point load applied at the tip of an semi-infinite crack in an infinitely extended
solid. After defining the auxiliary fields, the T-stress distribution along the crack front is be obtained by eval-
uating the domain form of the interaction integral–a volume integral surrounding the point of interest on the
crack front. In order to evaluate the integral, the finite element method is employed to obtain the stress, strain
and displacement fields in the cracked body. In order to assess the accuracy of the present method, the problem
of a thick plate with an inclined center crack is considered, and the present numerical results for T-stress as a
function of crack inclination angle are compared with the analytical solution. To demonstrate the utility of the
method, the problems of a lens-shaped crack and a warped elliptical crack embedded in a cylinder and subjected
to remote tension are considered and the results are discussed.

1 INTRODUCTION

The asymptotic expansion of the near-tip stress fields is composed of the well-known1/
√

r
singular terms, a non-singular term, and higher order non-singular terms that vanish asr approaches
the crack tip, Williams [1]. The first non-singular term that appears in the near-tip fields is commonly
called the T-stress. Knowledge of the T-stress is important, because it has been shown to play
a significant role on crack growth under mixed-mode loading conditions, and also on crack path
stability under pure mode I loading conditions.

The interaction integral method, also known as the M-integral method, has proven to be a useful
tool for extracting mixed-mode stress intensity factors in both 2-D and 3-D fracture problems, see
Shi and Asaro [2], and Gosz and Moran [3]. In the interaction integral method, auxiliary fields are
superposed on top of actual fields that come from the solution to the boundary value problem of
interest. The J-integral associated with the superposed fields,Js, can be expressed in terms of the J-
integral associated with the actual fields,J , the J-integral associated with the auxiliary fields,Jaux,
and an interaction integral, i.e.,Js = J + Jaux + I. The interaction integral can be expressed in
terms of desired crack-tip parameters through a judicious choice of auxiliary fields.

In the present paper, for the purpose of extracting the T-stress distribution along non-planar,
three-dimensional crack fronts, three-dimensional auxiliary fields are constructed by extruding two-
dimensional near-tip fields along the three-dimensional crack front. The two-dimensional fields are
taken to be those that arise from a point force applied at the tip of a semi-infinite crack in an infinitely
extended body. With this choice of auxiliary fields, the T-stress can be obtained simply by evaluating
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the interaction integral. The present study is conducted within the framework of linearized elasticity
theory, and small strain kinematics is assumed throughout.

For computational reasons, it is advantageous to recast the interaction integral into an equivalent
domain integral. In the present paper, the domains of integration are tubular domains surrounding
the points of interest on the crack front. For a given cracked geometry and external loading, the
boundary value problem can be solved using any suitable numerical technique. In the present paper,
the finite element method is employed. The crack-tip parameters are extracted in a post-processing
step. Unstructured meshes of 4-node tetrahedral elements are used to obtain the stress, strain and
displacement fields in the cracked body. In the present method, the geometry of the crack surface
and crack front can either be described mathematically, or they can be approximated, for example,
by Bezier patches and curves respectively. The Bezier patch and Bezier curve representations of
the crack surface and crack front allow the gradients of certain vector quantities that appear in the
domain form of the interaction integral to be readily calculated.

To outline the remainder of the paper, in the next section the crack surface and crack front geom-
etry are defined, and a local (orthogonal curvilinear) crack-tip coordinate system is set up in which
to define the auxiliary fields. In Section 3, the interaction integral is defined. The auxiliary fields
which appear in the integrand of the interaction integral are defined in Section 4 for extraction of
mixed-mode stress intensity factors and T-stress. The domain form of the interaction integral is de-
rived in Section 5, and details are provided for evaluating the domain integral as a post-processing
step in the finite element method. Some numerical results are presented in Section 6. In particular,
the accuracy of the present method is assessed by considering the problem of a thick plate with an
inclined center crack. The numerical results are compared with the analytical solution by Smithet al.
[6] as a function of crack angle. The second example is that of a lens-shaped crack embedded in an
infinite cylinder subjected to hydrostatic tensile loading. The results are compared to the analytical
solution by Martynenko and Ulitko [4]. The final example is that of a warped-elliptical crack surface
embedded in a cylinder subjected to remote tensile loading. This is an example for which, to the
author’s knowledge, there is no analytical solution. The distribution of mixed-mode stress intensity
factors and T-stress are obtained and the results are discussed.

2 CRACK SURFACE GEOMETRY

To begin, consider the crack surface shown in figure 1. The geometry of the crack surface can be
described mathematically as

f(x1, x2, x3) = 0, (1)

wherex1, x2, andx3 form the axes of a Cartesian coordinate system. A position vectorx(s) defines
the location of points which lies on the crack front. The unit tangent vector,T, to the crack front at
points is given as

T =
dx
ds

/

∣∣∣∣
dx
ds

∣∣∣∣, (2)

whereds represents an infinitesimal movement along the crack front. We now let the vectorb be
defined as the unit outward normal to the crack surface at points. It can be expressed as

b = ~∇f/
∣∣∣~∇f

∣∣∣ . (3)

A right handed system of three mutually perpendicular base vectors can now be constructed by let-
ting c = T× b. We note that the unit vectorc is perpendicular to the crack front and lies in the local
tangent plane to the crack front at points. The direction of each unit vectorT, b, andc changes
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Figure 1: Three-dimensional crack surface

continuously as points moves along the crack front.

3 INTERACTION INTEGRALS

In this section, we define the interaction integrals for extracting mixed-mode stress intensity factors
and T-stress along the fronts of three-dimensional, nonplanar crack surfaces. The J-integral,J(s),
evaluated at some points along the crack front, can be written as

J(s) = lim
Γ→0

cl(s)
∫

Γ(s)

(Wδlj − σijui,l)njdΓ (4)

whereΓ(s) is a contour lying in the same plane as the unit vectorsb andc that surrounds points.
Here in eqn (4),σij is the Cauchy stress,W is the strain energy density, andui,l are the components
of the displacement gradient tensor. The quantitynj represents the components of the unit outward
normal to the contourΓ, andcl(s) are the components of the unit vectorc. The fields that appear
inside the J-integral come from the solution to the actual boundary value problem of interest. These
will be referred to as the actual fields.

If we superpose auxiliary fields on top of the actual fields, the J-integral associated with the
combination of both fields,Js, can be expressed in terms of the J-integral (4) associated with the
actual fields,J , the J-integral,Jaux, associated with the auxiliary fields, and the interaction integral,
I, as follows:

Js = J + Jaux + I. (5)

The interaction integral,I, (also known as the M-integral) is defined as

I(s) = lim
Γ→0

cl(s)
∫

Γ(s)

(σikεaux
ik δlj − σiju

aux
i,l − ui,lσ

aux
ij )njdΓ, (6)

whereσaux
ij , εaux

ij , anduaux
i are the auxiliary stress, strain, and displacement fields defined in the

next section.

4 DEFINITION OF THE AUXILIARY FIELDS

For the purpose of defining the auxiliary fields, it is convenient to set up a local coordinate system
whose origin is located at points on the crack front. The localx

′
1, x

′
2, x

′
3 axes are chosen such that
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thex
′
1 axis is always aligned with the vectorc, thex

′
2 axis always points in the−b direction, and the

x
′
3 axis is parallel to the vectorT so as to form a right-handed coordinate system. We note that as

points moves along the three-dimensional crack front, the orientation of the local axes continuously
changes so that they remain parallel to the vectorsT, b andc.

4.1 Auxiliary fields for extracting mixed-mode stress intensity factors
For any points that lies on the crack front, the auxiliary stress, strain, and displacement fields are
defined to be the plane and anti-plane crack-tip fields. It is convenient to express the components
of these fields in the local (primed) coordinate system. It is also convenient to introduce the polar
coordinatesr andθ. The coordinater is the distance from the crack tip to a point lying in theb-c
plane. The angleθ is measured counterclockwise from thex

′
1 axis to the point of interest.

In the definitions below, the indicesi andj range from 1 to 2, and refer to components in the
primed coordinate system. The auxiliary stress field is defined as

σaux
ij =

Kaux
I√
2πr

f I
ij(θ) +

Kaux
II√
2πr

f II
ij (θ) (7)

σaux
i3 =

Kaux
III√
2πr

f III
i (θ) (8)

σaux
33 = ν(σaux

11 + σaux
22 ). (9)

Here in eqns (7)-(9), the parameterν is Poisson’s ratio, andKaux
I , Kaux

II , andKaux
III are the stress

intensity factors associated with the auxiliary fields. The quantitiesf I
ij(θ), f II

ij (θ), andf III
i (θ) are

the angular functions associated with the near-tip fields.
The auxiliary displacement components are defined as

uaux
1 =

1
8µ

√
2r

π

[
Kaux

I f I(θ) + Kaux
II f II(θ)

]
(10)

uaux
2 =

1
8µ

√
2r

π

[
Kaux

I gI(θ) + Kaux
II gII(θ)

]
(11)

uaux
3 =

1
µ

√
2r

π

[
Kaux

III gIII(θ)
]

(12)

whereµ is the shear modulus.
Finally, the components of the auxiliary strain field are defined as

εaux
ij =

1
2

(
uaux

i,j + uaux
j,i

)
(13)

εaux
13 =

1
2

∂uaux
3

∂x
′
1

(14)

εaux
23 =

1
2

∂uaux
3

∂x
′
2

(15)

εaux
33 = 0. (16)

We note that in the definitions (13)-(16), all derivatives with respect to the coordinatex
′
3 are zero.

For a given points on the crack front, and for any given pointr andθ, the auxiliary fields do not
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change with respect to a movement in the direction of the tangent vector,T, which is always parallel
to thex

′
3 axis.

It turns out that when the actual fields (with stress intensity factorsKI , KII andKIII ) and the
auxiliary fields (with stress intensity factorsKaux

I , Kaux
II , andKaux

III ) defined in the manner above,
are substituted into the interaction integral (6), the result (in the limit as the contour is shrunk onto
points) is

I(s) =
2(1− ν2)

E
[KIK

aux
I + KIIK

aux
II ] +

1
µ

KIIIK
aux
III . (17)

Thus, the stress intensity factors associated with the actual fields can be obtained by evaluat-
ing the interaction integral. For example, the stress intensity factorKI can be obtained by setting
Kaux

I = 1 andKaux
II = Kaux

III = 0. In this example we would obtain

KI(s) =
E

2(1− ν2)
I(s). (18)

4.2 Auxiliary fields for extracting the T-stress
For the purpose of extracting the T-stress at points along the crack front, we choose the auxiliary
displacement fields to be those associated with a point force,F , applied at the tip of a semi-infinite
crack in an infinitely extended body. Hence, the auxiliary displacement components referred to the
primed coordinate system are defined as

uaux
1 = −F (1 + κ)

8πµ
ln

r

d
− F

4πµ
sin2(θ), (19)

uaux
2 = −F (κ− 1)

8πµ
θ +

F

4πµ
sin(θ) cos(θ). (20)

uaux
3 = 0. (21)

whereκ is Kolosov’s constant (κ=3−4ν for the case of plane strain), andd is a characteristic length
from points to another pointp that lies on thex

′
1 axis.

The auxiliary strain field is defined as

εaux
ij =

1
2
(uaux

i,j + uaux
j,i ), (22)

where the indicesi andj range from 1 to 2 only. All of the out of plane auxiliary strain components
are taken to be zero, i.e.,εaux

13 = εaux
23 = εaux

33 = 0. The auxiliary stress field is obtained from the
auxiliary strain field using Hooke’s law for the case of plane strain.

When the auxiliary fields are defined to be those associated with a point loadF applied at the tip
of a semi-infinite crack in an infinitely extended and linearly elastic body, it can be shown that the
interaction integral (6) reduces to

I(s) =
TF

E
, (23)

whereT is the T-stress, see Paulino and Kim [5] for more details. Hence,

T (s) =
E

F
I(s). (24)
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5 DOMAIN FORM OF THE INTERACTION INTEGRAL

In order to facilitate the numerical computation of the interaction integrals defined in the previous
section, it is advantageous to recast the contour integrals into equivalent domain integrals. The equiv-
alent domain form of the interaction integral is obtained by defining an appropriate test or weighting
function and applying the divergence theorem. In the paper, the derivation of the domain integrals
for extraction of mixed-mode stress intensity factors will be provided. In addition, some important
aspects regarding the numerical evaluation of the domain integrals will be discussed. Of particular
importance is the fact that we are dealing with volume integrals (whose domains extend significantly
outside the near-tip region). Outside of the near-tip region, it turns out that the auxiliary strain fields
described above are not compatible with the auxiliary displacement fields. That is, the auxiliary
strain fields are not the symmetric gradient of the auxiliary displacement fields. It also turns out that
the auxiliary stress fields are not in equilibrium outside of the near-tip region. This lack of compat-
ibility and equilibrium gives rise to some extra terms in the domain integrals which require careful
consideration. This holds true for both evaluation of mixed-mode stress intensity factors and T-stress.

6 NUMERICAL RESULTS

In the numerical results section we will consider three example problems. The first problem will be
that of a thick plate with an inclined center crack. The plate is subjected to uniform tensile loading.
The numerical results for mixed-mode stress intensity factors and T-stress are reported for a variety
of crack orientations. The numerical results for T-stress are compared to the analytical result by
Smith et al. [6]. The second problem is that of a lens-shaped crack embedded in a cylinder and
subjected to all around tension. The mixed-mode stress intensity factors using the interaction inte-
gral method have been shown to compare favorably with the analytical solution by Martynenko and
Ulitko [4] in Gosz and Moran [3]. In the present paper, the T-stress distribution is also obtained and
the results are discussed. The final problem is that of a warped elliptical crack front embedded in
a block subjected to remote tension. Numerical results for the T-stress distribution along the non-
planar crack front are obtained and the results are discussed.
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