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ABSTRACT 

 
  Dynamic anti-plane shear crack propagation in an elastically stiff layer embedded in a soft matrix is 
investigated simultaneously by continuum mechanics and large-scale molecular dynamics simulation. The 
analytical solution predicts that  the crack can move supersonically with respect to the soft  material 
surrounding the layer. The stress amplitude ahead of the crack is influenced by the crack speed, layer width 
and elastic properties of both the layer and the matrix. The crack speed is found to depend on the ratio 
between the layer width and a characteristic length scale associated with energy transport in the vicinity of the 
crack. The corresponding atomistic simulation results are in good agreement with the theoretical predictions 
of continuum mechanics. This is a first quantitative study  combining continuum-atomistic methods to confirm 
the recently proposed length scale for energy flux in dynamic fracture [9]. 
 

 
 

Fig. 1: Geometry of supersonic mode III crack propagation in a stiff layer surrounded by a soft matrix . The 
plot shows the potential energy field. The Mach cone due to supersonic crack motion is clearly visible in the 

soft matrix.  
 
 

1  INTRODUCTION 
 

One of the important questions of dynamic fracture mechanics is  how fast a crack can propagate in 
a brittle solid [2,5,9]. For mode I cracks, the physically admissible stress singularity and energy 
release rate vanish for all crack velocities above the Rayleigh wave speed, and the Rayleigh wave 
speed is thus unambiguously identified to be the limiting speed for mode I cracks. For mode III 
cracks under antiplane shear loading, the shear wave speed C  is the associated wave speed and 
the corresponding limiting speed. For mode II cracks, complications arise in that velocities below 
the Rayleigh wave speed and those between the shear and the longitudinal wave speed are both 
admissible. Between these two admissible regimes, there is an impenetrable velocity gap, giving 



 

rise to the question which wave speed (Rayleigh or Longitudinal) should be the limiting speed for 
mode II cracks. Recent experiments and computer simulations have definitively shown that the 
mode II cracks can move at intersonic velocities [1-3,5] via a mother-daughter mechanism [5].  
Super-Rayleigh mode I and supersonic mode II cracks have recently been reported in hyperelastic 
solids where the crack dynamic is governed by elastic properties at large strains [4,9]. The 
possibility for supersonic mode III crack in a solid with stiffening stress-strain relation has been 
investigated by Guo et al. [6] based on a continuum mechanics model. These studies have led to 
the conclusion that hyperelasticity can play an important role in dynamic fracture. 
Buehler et al. [9] investigated the super-Rayleigh mode I crack motion by large-scale atomistic 
simulation. The authors discovered a new characteristic length scale that describes the region from 
which the crack needs to draw energy in order to sustain its motion. To further investigate the 
energy length scale, the authors considered the Broberg problem of a mode I crack propagating in 
a stiff layer embedded in a soft matrix as a model to understand locally subsonic and globally 
supersonic crack propagation. However, it has not been possible, even numerically, to study the 
solution obtained by Broberg [7] due to significant mathematical difficulties involved. Here we 
attempt to perform a combined atomistic and continuum study of the mode III Broberg problem, 
i.e. a locally subsonic and globally supersonic crack in a stiff layer surrounded by a soft matrix 
under remote anti-plane loading. The geometry of the problem is shown in Figure 1. The figure 
depicts the potential energy field near a supersonic mode III-loaded crack as obtained from a 
molecular-dynamics simulation. The mach cones due to supersonic crack propagation can clearly 
be observed.  
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Fig. 2: Model of a concentrated force P  moving with a constant velocity v  acting on hy =  

 
 

2  THEORETICAL ANALYSIS 
 

Consider a linear elastic strip with thickness h2  embedded in an infinite elastic matrix. The strip 
is taken to be elastically stiffer than the surrounding matrix. A mode III crack is assumed to 
propagate in the strip with a velocity v  slower than the shear wave speed of the strip material 

1C  and faster than that of the matrix material 2C , i.e. 12 CvC << . Here, subscript 1 denotes 
the layer and 2 denotes the solid. The relevant elastic properties are the shear modulus of the strip 



 

1µ  and that of the matrix 2µ .  
First, we seek the auxiliary solution to the boundary value problem of a layered half space 
subjected to a point force P  moving with velocity v , as depicted in Figure 2. Due to the 
anti-plane symmetry, the Broberg problem can be effectively converted to a mixed boundary value 
problem of such a layered half-space. Later we will integrate the moving force solution of Fig. 2 to 
describe the loading associated with the moving crack problem. We introduce a cartesian 
coordinate system ),( yx  such that the lower crack face lies on the plane of hy =  and 

vtx < , where t  denotes time. The solution to the crack problem will be obtained by the 
Wiener-Hopf method.  
In terms of dimensionless coordinates moving with velocity v , 
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The equation of motion for the strip can be written as 
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and that for the matrix is  
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The equations of motion can be solved when the boundary and continuity conditions are 
considered. The displacement gradient on 1=η  for the point force is found to be 
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where the two terms in the above equation are 
11 )()()( αααα λλα −−−+= eieiN ,          (5) 
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and 
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For an arbitrarily distributed load )(1 ξσ fyz = , the displacement gradient can be obtained by 

integration on the moving force solution as 
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Consider a moving crack with tip located at )1,0( == ηξ  in the moving coordinates. For the 
crack problem, we decompose the crack face loading 

)()()()()(1 ξξξξξ −+= UhUff            (9) 



 

into one part ahead of the crack and one part behind the crack, where  )(ξU  is the unit step 

function. The displacement gradient function 
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associated with the crack should then satisfy 
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Two-sided Laplace transformations have been used to obtain the Wiener-Hopf equation for the 
problem. Using the standard Wiener-Hopf technique and inverse Laplace transform, the stress field 
ahead of the crack tip and the displacement gradient on the crack face can be obtained. The details 
are omitted here and we give the solution for the case of a homogeneous crack face loading, 

yzxh σ−=)(0 , in the ),( yx  coordinate system as 
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and )( pD  possesses imaginary roots nip β=  ( 0>nβ ), ∞=  , ,3 ,2 ,1 ,0 Ln . 

The corresponding energy release rate can be calculated by standard methods [8], and the Griffith 
energy balance gives 
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Following [8], we define a characteristic length scale for energy transport  
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where β  is a parameter to be fitted with the atomistic results. These results suggest the 

following relationship between the ratio χ/h  and the crack velocity v , 
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3  ATOMISTIC SIMULATIONS 
 

The continuum solution of eqn (16) predicts crack velocity as a function of the ratio χ/h , i.e. 

)/( χhvv = . To compare with continuum solution, we have performed MD simulations to 

calculate the curve )/( χhv . Details of the MD simulation procedure will be published in a 

forthcoming paper [10]. Note that the aspect ratio of the slab is 3/ =yx ll  in the simulations 

(see also Figure 1).  
The crack speed should only depend on the ratio of the layer width h  to the characteristic energy 
length scale χ  for a given pair of strip and matrix materials . The characteristic energy length 

scale is defined such that χ/h  equals one when the increase in crack speed is 50 percent of the 

difference between the shear wave speeds of soft and stiff material. 
Figure 3 depicts the results of a set of calculations for the mode III Broberg problem. The 
continuous line corresponds to the continuum mechanics solution as discussed in the previous 
section, and the data points are MD simulation results obtained for different simulation conditions. 
In the MD simulations, the loading yzσ , the fracture surface energy γ  as well as the slab width 

are changed independently. These calculations suggest that the velocity scaling law predicted by 
eqn (16) is satisfied.  
From comparison of MD results to the continuum solution, we find 11≈β  and therefore 

2
1 / yzσβγµχ = . When the inner layer width h  approaches this length scale, the crack speed 

reaches halfway between the soft and stiff shear wave speeds. We note that the value of β  may 
also depend on the properties of the strip and matrix materials . Discussion on this point will be 
included in a forthcoming paper [10]. 
 

 
 

Fig. 3: Comparison of MD simulation results with the analytical solution to the mode III 
Broberg problem.  

 



 

 
4  CONCLUSIONS 

 
  We report a first quantitative study combing atomistic and continuum descriptions of the 

mode III Broberg problem of a globally supersonic and locally subsonic crack propagating in a 
stiff strip embedded in a soft matrix. The problem is significant for understanding the mechanism 
of energy flux near a dynamically propagating crack and, more generally, crack propagation in 
nonlinear elastic solids where, due to large local strains, the material property near the crack tip 
might become significantly different from that far away from the crack. 

In the continuum analysis, the solutions have been used to predict crack velocity as a function of 
the layer width scaled by a characteristic length scale associated with energy transport near the 
crack tip. The most significant result is the crack velocity scaling law derived in eqn (16), which is 
numerically solved and plotted in Fig. 3. Such velocity scaling law was discovered previously for 
the mode I case [9] based on a dimensional analysis. This paper is aimed at a quantitative study of 
the scaling law and energy length scale combining continuum and atomistic mechanics.  
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