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ABSTRACT 

Thermomechanical processes, which proceed in deformable solids under intensive dynamic loading, consist 
of mechanical, thermal and structural ones, which correlate themselves. The structural processes involve the 
formation, motion and interaction of defects in metallic crystals, phase transitions, the breaking of bonds 
between molecules in polymers, the accumulation of microstructural damages (pores, cracks), etc. 
Irreversible deformations, zones of adiabatic shear and microfractures are caused by these processes. 
Dynamic fracture is a complicated multistage process including an appearance, evolution and confluence of 
microdefects and a formation of embryonic microcracks, pores their grow up to the break-up of a bodies with 
division into separate parts. 
The present paper include new results in the next scopes: 
1) development the thermodynamically correct mathematical models of damageable 

thermoelastoviscoplastic medium (microfracture); 
2) development the methods for determination of “nonstandart” constants of medium models, connected 

with microfracture of material; 
3) numerical simulation of destruction (fragmentation) of constructions (macrofracture); 
4) numerical  investigation of  some  problems  for damageable  solids and structures  (dynamical 

deforming  
        and fracture of thick-walled cylindrical and spherical shells under  explosion;  dynamical  deforming and  
        fracture of thick-walled two-layer shell, filled with liquid, under impact and high velocity penetration).  
 

1 INTRODUCTION 
It is common practice to recognize the following three basic types of dynamic fracture: viscous, 
brittle, and with formation of zones of adiabatic shear. The viscous fracture (observed in metals 
like aluminum and copper as well as in solid fuels and explosive) is characterized by formation 
and evolution of near-spherical pores during a process of plastic deformation. It is typical for the 
brittle fracture of a body that arbitrary oriented coin-shaped microcracks (capable to grow during 
deformation) are formed in great number of steels. If the rate of deformation is high, then process 
of plastic flow is adiabatic. In a number cases, the liberated heat is concentrated in thin domains 
whose thickness ranges up to several tens of microns. These domains are located along the 
surfaces of maximal tangential stresses; this leads to a considerable  increase of characteristics of 
the plastic flow along these surfaces. In particular, such fractures with formation of zones of 
deformation shear are observed in still cylinders loaded by an explosion and in cases of punching 
the barriers by percussion mechanisms with flat front acts (forcing a “plus” out of a barrier). 
Since a great number of the above-mentioned are formed in the process of dynamical deformation, 
it is difficult to consider each of such microfracture individually. In this connection, in recent years 
some approaches have been developed, whereby certain internal variables characterizing the 
evolution of microdamages are introduced into determining equations. This line of investigation is 
called mechanics of continual (or scattered) fracture. 
The development of mechanics of continual fracture was originated in the papers (Kachanov [1]; 
Rabotnov  [2]), dealing with theory of creeping of materials, where one scalar damage parameter 
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was introduced. A short time later, tenser measures of damage were proposed (Il’yushin [3]). 
Attempts to introduce these tensors are undertaken up to now (Astaf’ev, etc. [4]). 
The introduction of the damage parameters into the system of internal variables and the usage of 
thermodynamic principles of continuum mechanics make possible the construction of 
thermodynamically correct coupled models of damageable solids (Coleman, etc. [5]; Kiselev, etc. 
6—10, 12, 16, 17]; Kiselev [11]).  
 

2 MODELS OF MECHANICS OF CONTINUAL FRACTURE 
In particular, was constructed the thermoelastoviscoplastic model with two damage parameters, 
permitting to description microfracture in domains of intensive tension and by formation of zones 
of adiabatic shear [10, 11]. Since we describe the viscous fracture with formation of spherical 
micropores and the fractures with formation of shear zones, we choose in the capacity of the 
damage parameters the following two invariants of the tensor ijω : the scalars 3/kkωω = (the 

volume damage) and ijijωωα ′′= (intensity of the damage tensor deviator ijijij ωδωω −=′ ). We 

shall assume that in domains of intensive tension the parameter ω  describes the accumulation of  
micropores  type  damages  (which  make  disappear  under compression) and the parameter α  
describes the shear fracture. As is done is classical theories (Kachanov [1]; Rabotnov [2]), we shall 
interpret the parameter ω  as  relative  decrease  of  the effective  load-bearing elementary area due 
to formation of micropores inside the specimen. The parameter ω  may be considered as a volume 
content of micropores in the material. In the damage-free material we have 0== αω ; if damages 
are accumulated, then ω  and α  increase in such a manner that they remain less than 1. 
The system of constitutive equation for a model of damageable thermoelastoviscoplastic medium 
is as follows: 
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Here are ijσ , e
ijε , p

ijε — the components of the stress tensor, elastic and no elastic (viscoplastic) 

deformation tensors, respectively   ( p
ij

e
ijij εεε += ; 0=p

kkε ); T is the absolute temperature; qr
— 

is a heat flux; ρ  is density; A, D, C, Λ , *σ  , *
?S  — constants of  materials, connected with 

damage parameters ω   and α ; 0K , 0µ , 0η , 0Y — volume module, shear module, dynamic 
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viscosity and static yield of elasticity for an undamaged material; σ?  is the heat conductivity at 

constant stress; vα   is the coefficient of cubic expansion; κ  is the coefficient of heat 

conduction; )(xH  is Haviside  function; the  dot over  symbols indicates the material derivative 
with respect to tine. 
The  kinetic  equation  for  the  volume  damage  ω   consists of three terms. The first one has the  
form   of  the Tuler – Bucher  equation   and  describes  the  stage of formation and initial growth  
of  the  volume  damage  ω .        Then,   as  ω    is  accumulated,    the  second  term  describing  
the viscous growth in domains of tension of the material comes into play (Kiselev, etc.[12]). The   
third   term  describes   the viscoplastic  flowing  in  pores when  the material is compressed.    
Note   that   the   equation    for  ω    taken   without    the   dynamical   problem    on   a   single  
spherical pore of  inner radius a  and  other radius b in a viscoplastic incompressible material.  

   We   assume   that    the   yield   limit    Y    and   shear   modulus   µ   depend   on  temperature, 
   pressure, density, accumulated plastic strain, as in model of Steinberg - Guinan (Wilkins [13]): 
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melting of material; 00Y , 00µ , 0mT , β , h , b , 0γ  are materials constants. It is accepted that  
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In formulas (2) - (3) we denote by two zeros the parameters of the undeformed material: 0ρρ = , 

0=σ , 0TT = . 
This model develops the model for elastoviscoplastic medium Socolovsky – Malvern type and 
takes into account the formation and accumulation of damages in domains of intensive tensor, 
their disappearance under compression as well as the heating effects and the accumulation of 
damages in domains of intensive tension, their disappearance under compression as well as the 
heating effects and the accumulation of damages under shear. The mechanical, structural, and heat 
processing are mutually dependent. 
The evolution of the intensive plastic flow and accumulation of microstructural damages may be 
considered as a process of  prefracture  of the material. The entropy criterion of limiting specific 
dissipation (Kiselev, etc. [6]): 
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is proposed as the criterion of the beginning of macrofracture (i.e., the beginning of formation of 
cracks (new free surfaces) in material). Here *t  is the time of the beginning of fracture; *D  is a 

constant of the material (the limiting specific dissipation); Md , Fd  and Td  are mechanical 
dissipation, dissipation of continuum fracture and thermal dissipation.   
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If zones of large stresses appear in the body (as, for example, in the problem on plane collision of  
plates with spallation fracture (Kanel, [14]),   then the major  contribution  to dissipation (4) is 
made by  Md and by term  2ω&Λ  from Fd  .  As for the developed shearing plastic flow with 

formation of zones of adiabatic shear, the major contribution to dissipation D  is made by Md , 

Td  and by the term 2α&A  from Fd  (like in the problem of forcing a “plug” out of a barrier by a 

percussion mechanism with a flat front cut) (Fomin, etc. [15]). 
When criterion (4) is fulfilled at some point of material, a microcrack should be formed there, i.e., 
a new free surface that will spread over the body. Thus, the problem on calculation of the further 
deformation becomes self-depend in the framework of computational mechanics of deformable 
solids. 
 

3 THE METHODS FOR DETERMINATION MATERIAL CONSTANTS  
Models for damageable media contain some “nonstandard” constants, connected with damage 
parameters and subjected to determining. As, the models with single damage parameter (Kiselev, 
etc. [6, 7]) contain tree such constants. In addition, these models contain  fourth unknown constant 
– a constant of limiting specific dissipation. For determining these constants we use a method, 
based on comparison the results of physical and numerical experiments of the problem of flat 
collision of  two plates with spallation destruction in a plate-target (Kiselev, etc. [6, 7]). Note, that 
experiments with spallation destruction are today the most informative and detailed for 
constructing dynamic constitutive equations for materials under high parameters (Kanel, etc. [14]). 
For model of porous medium [7] intended for describing behavior of solid fuels and explosive, we 
used the problem of compression of a spherical microscopical pore filled of gas medium (Kiselev, 
etc. [12]). The model with two damage parameters (see (1), (4)) contained seven such constants: 
A, B, C, Λ , *σ  , *

?S , *D  . For determining these constants under quasidynamical deforming the 
modelling the method, based on numerical and physical modelling of processes of quasidynamical 
twisting and tension of thin-walled tubular samples with destruction and with following 
mathematical data handing, was proposed (Kiselev, etc. [9]). However, we don’t know published 
results of experiments, which make possible to determine constants for real materials. 
For dynamical loading of materials with destruction there are many experiments of flat collision  
of the plates with spallation destruction (Kanel, etc. [14]), which ma ke possible to determine  the 
constants of damageable media (1), (4) (Kiselev, etc. [16]). 

 
4 DYNAMICAL DEFORMING AND FRACTURE OF THICK-WALLED CYLINDRICAL 

AND SPHERICAL SHELLS UNDER EXPLOSION 
For the first time were carry out numerical investigation of problem of irreversible dynamic 
deforming and fracture of thick-walled spherical and cylindrical shells as taking account of 
microfracture with formation and development of defects micropores type and zones of adiabatic 
shear, as macrofracture up to full destruction of constructions. Determined main regularities of 
dynamical irreversible deforming and fracture of shells in wide range of loading which bring as to 
spallation and shear fracture as total destruction of shells. 

 
5 DYNAMICAL DEFORMING AND FRACTURE OF THICK-WALLED TWO-LAYER 

SPHERICAL SHELL, FILLED WITH LIQUID, UNDER IMPACT AND HIGH  
VELOCITY PENETRATION  

We consider two-layers container filled by water. The outer layer is of thermoprotecting 
composition material, which is modeled by Maxwell-type thermoviscoelastic medium. Second, 
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thinner layer is aluminum. Irreversible deformation and microfracture dynamics of aluminum layer 
is modeled as dynamics of damageable type thermoelasticviscoplastic medium (eqns (1) – (4)).  
Liquid, which filled the container, is described by wide-range equation of state by Kuznetsov. This 
equation of state is extended into low pressure range by special approximation based on 
experimental data (Kiselev, [18]).  
We consider irreversible dynamic deformation and destruction of filled container numerically in 
two dimensional axially symmetric geometry. This task is solved by numerical modeling on 
Lagrangian mesh by method similar to Wilkins one (Wilkins, [13];  Fomin, etc. [15]). 

Situation of container impact on rigid wall with initial velocity smV /1000 = at time 

mst 2.54= present on figure 1. 
Situation of high velocity penetration of container by steel ball  ( skmV /50 = ) present on 

figure 2. Irreversible deformation and microfracture dynamics of steel ball is modeled as dynamics 
of damageable type thermoelasticviscoplastic medium (eqns (1) – (4)). Pressures in the water 

reach about 1500 bar and temperatures are about C2000 . Container is disrupted. 
 

 
 

    
  Figure 1: Impact of container on rigid wall.         Figure 2: High velocity penetration of container. 
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