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ABSTRACT
The material force method for inelastic fracture is applied to study steady-state crack growth in a thin

viscoelastic strip. The method calculates the work rate of dissipation from a balance of energy momentum that
explicitly accounts for the effects of viscoelastic behavior. In a finite element framework, the method provides a
tool to visualize the viscous dissipation zone. Simulations of crack growth using inter-element cohesive surfaces
was performed for strips of various sizes. The same driving force was applied to each strip. Results show that
the finite width of the strip constrains the development of the viscous dissipation zone. There is a critical size
of the strip relative to the viscoelastic length scale, calculated by the crack speed and characteristic relaxation
time, below which the crack speed exhibits a dependence on geometry.

1 INTRODUCTION

For biological materials composed at least in part of organic polymers such as collagen, proteins, and
lipids, viscoelasticity can play an important role in the fracture response. One biological material
that has received significant attention in recent years for its extraordinary strength and toughness
properties is nacre, the material of the iridescent lining of abalone shells. Nacre is composed of
argonite platelets, an orthorhombic calcium carbonate crystal, joined end-to-end to form sheets a
few hundred micrometers thick. The sheets are stacked in a staggered formation, and the result
is a “brick-and-mortar” microstructure [1]. Nacre displays a toughness that is roughly 3000 times
larger than monolithic calcium carbonate, though both materials exhibit similar stiffness properties
because of the high volume fraction of the mineral phase in nacre [1]. Gao et. al. [2] proposed that
the nanometer size of the argonite crystals in nacre optimizes the strength of the crystals by changing
the failure mechanism from Griffith crack growth to uniform decohesion. Crack growth in nacre is
restricted then to the soft protein layers which can dissipate significant fracture energy through large
deformation and viscoelastic behavior.

In general, viscoelastic behavior in the bulk material generates dissipation which contributes to
the fracture energy as measured by the applied loading. The work rate of dissipation typically varies
with the crack speedv and scales with the intrinsic fracture energy exhibited by the material under
conditions of negligible viscous dissipation. This behavior was recorded for peel tests of adhesive
tapes by Gent and Petrich [3] and observed in numerous analytical studies of viscoelastic fracture
[4, 5, 6]. Under “small-scale yielding” conditions when viscoelastic behavior is localized to the near-
tip region, the fracture energy for a linear material with a single characteristic relaxation timeτ varies
asymptotically from the intrinsic value to a maximum value that is the intrinsic fracture energy scaled
by the ratioρ of the short-time to long-time moduli . Using scaling analysis, de Gennes [7] proposed
that the viscous dissipation zone for steady-state growth occupies a ringvτ < r < vτ/ρ surrounding
the crack wherer is radial distance from the crack tip. The work rate of dissipation produced by a
crack growing at speedv depends on the characteristic size of the viscous dissipation ring relative to
the characteristic sizeL of the process region. The effects of viscous dissipation is negligible when
the viscous dissipation zone is smaller than the fracture process region. For this case, the fracture



energy equals the intrinsic value. However, the fracture energy acquires its maximum value when
the viscous dissipation ring is fully formed outside the process region. For ”large-scale yielding”
problems where the viscous dissipation region encompasses much of the body, Rahulkumar et. al.
[6] showed that the work rate of dissipation depends on the interaction of the viscoelastic parameter
vτ with an additional length scale, the characteristic dimensionH of the body. As the boundaries
of the viscous dissipation zone grow beyondH, the material response everywhere becomes elastic
and the fracture energy decreases to the intrinsic value. Rahulkumar et. al. [6] obtained this result
specifically for peeling of a viscoelastic strip. Here, we apply a similar approach to examine the
effects of viscoelasticity in the fracture of nacre.

As a first step towards understanding the contribution of viscous dissipation in the protein matrix
to the toughness of nacre, we propose to model cohesive crack growth through thin viscoelastic strips
of various sizes. The Xu-Needleman cohesive surface model [8] is used to describe the fracture
process, and the material force method for inelastic fracture developed by Nguyen et. al. [9] is
applied to characterize the geometry of the viscous dissipation zone. The material force method is a
path-dependent integral method that calculates the work rate of dissipation independently from the
energy release rate. In a finite element framework, the method computes the work rate of dissipation
from a field of nodal dissipation forces that can be used to visualize the viscous dissipation zone.
Previous analytical studies of viscoelastic fracture have used ad hoc methods to depict the viscous
dissipation region. An example developed by Hui et. al. [5] applies a strain parameter that compares
the difference between the equivalent strains in the long-time and short-time elastic regions. These
methods are approximate because they do not calculate directly the work rate of dissipation.

The first section briefly reviews the material force method for inelastic fracture. The method is
applied to the cohesive strip problem to observe the interaction of the viscous dissipation region with
the finite boundaries of the strip. We present preliminary results that demonstrates the influence of
geometry on the crack speed. Further investigation of these results will help to define the role of
viscoelasticity in the fracture of nacre and similar biological materials.

2 Material force method for linear viscoelasticity

This section briefly reviews the development of the material force method for viscoelasticity as
presented by Nguyen et. al. [9]. The particular viscoelastic model used in the developments is the
generalized standard linear solid. The standard solid model assumes an additive decomposition of
the strain into elastic and viscous components,εεε = εεε

e+εεε
v. Also assumed is a quadratic free energy

density functionΨ(εεε,εεεe) = ΨEQ(εεε) + ΨNEQ(εεε
e) whereΨEQ(εεε) is the elastic equilibrium part

while ΨNEQ(εεε
e) denotes the time-evolving nonequilibrium part. The stress response is calculated

from the free energy density as,σσσ = ∂Ψ/∂εεε = ∂ΨEQ/∂εεε + ∂ΨNEQ/∂εεε
e = σσσ

EQ + σσσ
NEQ, and a

linear evolution equation is prescribed for the viscous strain,ηηη : ε̇εε
v = σσσ

NEQ, whereηηη is a positive-
definite viscosity tensor. The linear evolution equation is associated with the quadratic viscous
dissipation potentialDvisc = σσσ

NEQ : ε̇εε
v.

Consider the undeformed configuration of a cracked linear viscoelastic bodyΩo shown in Fig. 1.
The coordinate of a material point inΩo is denoted byX while x is reserved for the spatial coordi-
nates. A contourΓo with outward unit normalN is defined about the external boundary and the crack
surfaces. Another similarly directed contourΓ

δ
is drawn around the infinitesimal crack-tip region

Ω
δ

and connected toΓo to form a closed path. It is assumed that acting on the boundaryΓo is ma-
terial traction calculated from the projection of the material stressΣΣΣ onto the surface normalN, and
within Ωo are distributed material body forces. Material forces are the thermodynamic conjugates of
material motions, the more classical terms of which are configurational changes or inverse motions.
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Figure 1:A crack in an otherwise homogeneous body

In an inhomogenous body, distributed material forces are produced by the explicit dependence of the
free energy density on the material coordinatesX. In a homogeneous body, the presence of material
forces also correspond to the motion of defects such as cracks [10, 11], and to inelastic material
behavior [10]. Here, we are concerned with the latter two.

For the viscoelastic problem, the material stress is defined in the form of the energy momentum
tensor,ΣΣΣ = Ψ(εεε,εεεv)1−∇∇∇uT

σσσ , whereΨ(εεε,εεεv) is the free energy density expressed in terms of the
total and viscous strain. The associated material viscous body force is given asfvisc = σσσ

NEQ : ∇∇∇εεε
v.

The quasistatic material force balance for the volumeΩr = Ωo−Ω
δ

in the absence of physical body
forces equates the surface and volume forces as,∫

Γo

ΣΣΣN dS− lim
δ→0

∫
Ωr

−fvisc dV = lim
δ→0

∫
Γ

δ

ΣΣΣN dS, (1)

where the volumeΩ
δ

has been shrunk to the crack-tip. The volume term accounts for the aggregate
effects of viscoelasticity while the surface term on the right hand side is the material force associ-
ated with crack motion. The material force balance also can be obtained directly from the quasistatic
equilibrium equation. Within that framework, eqn. (1) acquires the significance of the global bal-
ance of energy momentum. In fracture mechanics, the flux of energy-momentum through a contour
surrounding the crack-tip is applied by theJ-integral to calculated the energy release rate for crack
growth.

In the absence of viscoelastic behavior, the volume integral vanishes and the material force bal-
ance in eqn. (1) reduces to the path-independence statement of the vectorialJ-integral which equates
the far-field and near-tip energy-momentum flux. This relation motivates the physical interpretation
of the contour integral on the right-hand-side of eqn. (1) as the near-tip free energy release rate. The
expression forming the left-hand side is defined as the global material force,

Fmat =
∫

Γo

ΣΣΣN dS− lim
δ→0

∫
Ωr

−fvisc dV︸ ︷︷ ︸
Fdissip

. (2)

The global material forceFmat calculates the difference between the far-field free energy release rate
and a volume integral of the viscous body force defined as the global dissipation forceFdissip. The
latter is interpreted as the work rate of dissipation in the regular volumeΩr . Nguyen et. al. [9]



demonstrated this interpretation analytically for steady-state growth. Using numerical examples of
cohesive crack growth, they further extended the interpretation to arbitrary transient conditions.

Inspired by Moran and Shih [12], a test functionQ = QD is defined for implementation in
a finite element setting whereQ = 0 on the far-field contourΓo and Q = 1 on the near-tip con-
tour Γ

δ
. This test function provides, once approximated using Galerkin shape functionsMA (X), a

weak approximation expression for the global material,Fmat,h = ∑QAFmat
A , and dissipation forces,

Fdissip,h = ∑Fdissip
A

, where the nodal material and dissipation forces are assemble from element quan-
tities as,

Fmat
A =

nel

A
e=1

∫
Ωe
−ΣΣΣh∇∇∇MA dV−Fdissip

A , Fdissip
A =

nel

A
e=1
−
∫

Ωe
σσσ

NEQ,h : ∇∇∇εεε
v,hMA dV, (3)

Nguyen et. al. [9] applied the material force method to cohesive crack growth in an applied, Mode I
K-field. Their results showed that the nodal material forces were significant only in the cohesive zone
while the nodal dissipation forces occupied a peanut shaped region around the crack tip. Also unlike
the nodal material forces, the nodal dissipation forces were aligned primarily against the direction of
crack growth. The global dissipation force calculated according to summation on eqn. (3)b agreed
with an independent calculation of the work rate of dissipation. These observations support the
interpretation of the global dissipation force as the work rate of dissipation and the region occupied
by the nodal dissipation forces as the viscous dissipation zone for cohesive crack growth.
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Figure 2:Steady-state growth in infinite viscoelastic strip subjected to fixed displacement loading.

3 Steady-state crack growth in a viscoelastic strip

The infinite strip problem was applied to examine the effects of finite geometry on viscoelastic crack
growth. Consider a crack in a thin, infinite viscoelastic strip subjected to fixed displacement loading
as shown in Fig. 2. Assuming that viscoelastic deformation is localized to the crack tip region,
the far-field energy release rate for steady-state growth can be calculated from the difference in the
stored elastic energy of a strip the size of the crack incrementδa far ahead of the crack tip and a
similar strip far behind the crack tip. The result relates the far-field energy release rate to the width
H of the strip and the applied displacement∆ as,

Go =
E∗∆2

2H
, (4)

where for the viscoelastic problemE∗ = E∞/
(
1−ν

2
)

is the plane stress, equilibrium Young’s mod-
ulus. For the simulations, model viscoelastic parameters were chosen to giveµ∞/µo = 0.5 for the
ratio of the equilibrium and instantaneous shear moduli. The same ratioκ∞/κo = 0.5 was chosen for
the bulk moduli, and the shear and bulk relaxation times were set to unity,τS = τB = 1. The values
of the equilibrium shear and bulk moduli were selected for a Poisson’s ratio ofν = 1

3.



Figure 3:Steady-state viscous dissipation zone for viscoelastic strips of widthH/h = 50,24,12.
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Figure 4:History of crack growth∆a/h for viscoelastic strip of various widths

A long, uniform finite element (FE) mesh of square, bilinear elements was used to model the
cracked viscoelastic strip. For a given element size, the length of the strip was set toL = 400h and the
width of strip was varied in the simulations. Inter-element cohesive surfaces were embedded directly
ahead of the precrack for the entire length of the strip. Their constitutive behavior was prescribed
by the Xu-Needleman model [8]. The cohesive properties were chosen such thatδn/h = 0.12 and
σn = E∞/15 whereδn andσn are the critical crack opening and the peak traction.

Fig. 3 plots the contour of the component of the nodal dissipation forces in the direction of growth
for steady-state growth in viscoelastic strips of widthH/h = (50,24,12). Displacement loading was
applied to the strips such that each exhibited the same steady-state, far-field energy release rate as
determined from eqn. (4). The assumed values of the far-field energy release rate were verified in
the simulation using calculations of the global material force. The contours visualize the viscous
dissipation zone which appears for the largest strip as a peanut-shaped region surrounding the crack
tip. For the two smaller geometries, the viscous dissipation region grows into the upper and lower
boundaries of the strip. Fig. 4 plots the history of crack growth∆a/h as a function of time offset by
the initiation timet f . The constant slope displayed by the plots fort− t f > 0 shows that steady-state
growth occurs rapidly after initiation. The two larger strips exhibit the same steady-state speed while
a faster crack speed is calculated for the smallest strip.

4 Conclusion

A material force method for inelastic fracture was applied to investigate crack growth in a vis-



coelastic strip. In particular, plots of the nodal dissipation force were used to characterize the viscous
dissipation zone for steady-state growth in strips of varying widths subjected to the same driving
force. The preliminary results presented suggest that below a critical size, the width of the strip
constrains the development of the viscous dissipation zone which promotes faster crack growth. In
the future, we plan to examine this conclusion by calculating the relationship between the work rate
of dissipation and crack speed and by observing more closely the influence of the strip geometry
and the cohesive zone on the characteristics of the viscous dissipation zone. We expect that as with
the viscoelastic peeling problem studied by Rahulkumar [6], the interaction of the various length
scales in the strip problem yields an optimum parametervτ/H that maximizes the fracture energy.
For biological materials like nacre, comparing this parameter with the length scale of the composite
microstructure will clarify the importance of viscoelasticity to the fracture response.
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