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Extended Abstract 
 
There are many empirical equations for the forces to cut wood under 
different conditions of processing using different types of cutting tool 
geometry. From such expressions, other empirical formulae for cutting 
power, cutting energy and specific cutting energy (energy to remove a 
unit volume of kerf) have been determined. For simple orthogonal two-
dimensional cutting it is found that the cutting force FH parallel to the 
direction of blade motion is given either by 
 
FH

 = K tm w                                                                                             (1) 
 
for small chip thickness t, or by 
 
FH = (A + Bt) w                                                                                      (2) 
 
for thick chips. In both equations, w is the width of the chip and K, A, B 
and m are constants depending upon tool geometry and friction, and the 
mechanical properties of the wood. For example, for sugar pine having 
8% moisture content cut parallel to the grain by a tool having 30° rake 
angle and 15° clearance angle, Franz (1958) gives 
 
FH/w = 180 t0.4                 (lbs/in for t in inches)                                   (3)    
 
and 
 
FH/w = 22 + 730 t             (lbs/in for t in inches)                                  (4) 
      
Where theory has been applied to explain the form of such empirical 
relationships, it has usually been of the Ernst-Merchant (eg 1944) type, 
originally proposed for orthogonal continuous chip formation in 
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metalcutting, in which deformation of the chip to flow up the rake face of 
the blade is assumed to be concentrated in a single (primary) shear plane 
orientated at an angle φ to the cut surface. Friction between the underside 
of the chip and the rake face of the tool is included and, from equilibrium 
of forces, expressions are obtained for FH and FV (the force perpendicular 
to the cut surface). The expressions for FH and FV are given in terms of 
the (unknown) angle φ. The ‘best’ value for φ is obtained by minimising 
the cutting work, which leads to 
 
φ = (π/4) – (1/2)(β - α)                                                                         (5) 
 
where β is the friction angle and α is the orthogonal tool rake angle. 
Unfortunately, this expression is independent of material properties, 
whereas it is known from experiments on metals, plastics, wood etc that φ 
is material dependent. Furthermore, the Ernst-Merchant line of attack 
predicts that plots of force vs uncut chip thickness (depth of cut) should 
pass through the origin whereas they most often have a positive force 
intercept at zero depth of cut (cf Equation (4)). Other considerations not 
covered by the simple analysis are the formation of discontinuous chips 
and splitting (the different types of chip in wood identified by Franz, 
equivalents of which occur with other materials, cf Rosenhain and 
Sturney, 1925). Wood’s compressibility and severe anisotropy further 
complicate matters as discussed by Koch (1964, pp 79 et seq) for which 
modifications of the basic Ernst-Merchant analysis have been proposed. 
 
The shortcomings of the Ernst-Merchant approach for cutting forces of all 
sorts of materials have been examined by Atkins (2003) in the light of 
both basic physical principles and the methodology required in finite 
element (FEM) simulations of cutting. In FEM modelling it is found that 
a ‘separation criterion’ has to be employed at the crack tip in order for the 
tool to cut a chip and move along the surface. While one view of such a 
requirement is that it is merely a computational convenience to avoid the 
singularity at the tip of the tool, it transpires that the specific work 
associated with many successful separation criteria employed for ductile 
metals are at the kJ/m2 levels typical of fracture mechanics toughnesses, 
and that the form of the criteria are what would be expected from the 
micromechanisms of fracture by which the chip is separated from the 
surface. It was shown that inclusion of a surface work term, as well as the 
usual plasticity and friction components in even the simplest Ernst-
Merchant model, resolved many of the previous shortcomings. For 
example, for given tool geometry and friction, φ becomes material 
dependent through the non-dimensional parameter Z = R/τyt where R is 
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the fracture toughness, τy the shear yield stress and t the depth of cut. It 
was shown that 
 
FH/w  = [R/Q] + [τy γ /Q]t                                                                       (6) 
 
and  
 
FV = FH tan(β - α)                                                                                   (7) 
 
where γ = cot φ + tan (φ - α) = cos α/cos (φ - α) sin φ is the shear stress 
on the primary shear plane and β is the friction angle on the rake face of 
the tool. Q = [1 – {sinβsinφ / cos(β - α) cos(α - φ)}]  is the friction 
correction factor. Solution of Equation (6) looks for the φ which 
minimises FH.                                   
 
For given tool geometry and friction, it is found that at large depths of cut 
(strictly below a critical Z of about 10-1 ∼ 1), the optimum φ is 
independent of t, from which it follows that the shear strain γ along the 
primary shear plane is constant and hence a linear relation between FH/w 
and t is predicted which, however, does not pass through the origin and 
has a finite intercept (R/Q) which is a measure of the fracture toughness. 
This agrees with the empirical Equation (2). At small depths of cut which 
increase Z above the critical value, φ decreases as t decreases, and the 
shear strain γ increases; this produces a downwards curvature in plots of 
FH vs t given by Equation (6) exactly as in the empirical Equation (1). 
However, unlike Equation (1), the curve given by Equation (6) again does 
not pass through the origin and has a finite intercept which is a different 
measure of the (same) R of the material. The two separate empirical 
relations for thin and thick chips given by Equations (1) and (2) are thus 
seen to be part of a single unified theory given by Equation (6). 
 
Good agreement between the new theory and experiment has been found 
for orthogonal cutting of metals and plastics (Atkins, 2003a and 2003b) 
and wood (Atkins, 2004). In this paper we apply the theory to the 
particular results of McMillin and Lubkin (1959) relating to the climb-
sawing of hard knot-free maple in different directions using an 
overcutting radial arm saw. The power consumed P is given by the 
average total cutting force M multiplied by the cutting velocity c, where 
the average total cutting force is the force FH per tooth given by Equation 
(6) multiplied by the number of teeth engaged at any one time in cutting. 
The number of teeth cutting is b/p where b is the arc of contact between 
saw rim and material, and p is the pitch of the teeth. The mean thickness 
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of cut t is given by [pfdk/bcg] for the spring-set teeth employed by 
McMillin and Lubkin, where f is feed rate, d is thickness material being 
cut, k is kerf width, and g is the thickness of the circular saw blade. In 
McMillin’s and Lubkin’s experiments all of p, c, k and g were held 
constant, so Equation (6) gives  
 
P =  C1b + C2 f d ≈ d ( C1 + C2 f )                                                          (8) 
 

since b ≈ d in practice. Reference to Equation (6) shows that 
 
C1 = [R k c /Q p] and C2 = [τy γ k2 /Q g]                                                  (9) 
 
Equation (8) suggests a linear relation between P and f having positive 
intercept C1d and slope C2 d, which is exactly what was discovered 
experimentally, only now physical meaning can be put on the empirical 
constants. Making appropriate substitutions it is found that τy is some 25 
MPa and R is about 100 J/m2. 
 
Experiments were performed at various angles θ to the grain orientation. 
The empirical expression obtained by McMillin and Lubkin for cutting 
power was 
  
P = d ( C1 + C2 f ) (1 + E sin2θ)                                                          (10) 
 
where E was another empirical constant. The form of this relation is 
perhaps surprising, as it suggests that the same R/τy ratio applies for all 
orientations. Further discussion on this and other matters will be 
contained in the full paper.                                                         
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