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Extended abstract 
 Electroactive materials include piezoelectrics, ferroelectrics and electroactive 
polymers.  In the simplest form, this class of materials also includes isotropic dielectrics 
where there is minimal coupling between the mechanics and electrostatics.  Indeed, 
electroactive polymers can be isotropic.  Then they derive their useful properties of 
electrically stimulated actuation from their low mechanical stiffness and then large 
actuation strains occur when electric fields are applied.  In the presentation, a consistent 
energetic formulation of boundary value problems for electroactive materials is 
formulated, including the electrostatic stress.  This step is important because a correct 
energy balance can only be achieved after the proper formulation is obtained.  The energy 
release rate for cracks in electroactive materials is then calculated and the J-integral for 
these systems obtained.  The results are specialized to simple isotropic dielectrics, 
electroactive polymers, piezoelectrics and ferroelectrics.  Fracture models are then 
considered for each type of material, including brittle failure concepts for simple 
dielectrics and piezoelectrics, switching zone effects in ferroelectrics and energy balance 
models for electroactive polymers.  The outcome is a comprehensive and consistent 
fracture mechanics for electroactive materials.  The concepts can also be extended to 
magnetoactive materials. 
 

With the electric field given by Ei, the material polarization by Pi, the Cauchy stress 
by σij, the material velocity by vi and position by xi, the rate of internal work in a volume 
V containing material is given by [1] 
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is the Maxwell stress at the specified electric field for free space absent any material, the 
superscript M on stress indicates the material Maxwell stress, κo is the permittivity of free 
space and ρ is the material density.  This external work rate is 
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where bi is the mechanical body force per unit volume (e.g. gravity), Ti is the mechanical 
traction on surfaces S, φ is the electrical potential, q is the extrinsic charge density per 
unit volume and ω is the extrinsic charge per unit area of S.   
 

In the quasi-static limit, Maxwell's laws state that the electric field must be curl-free 
and Gauss' law states that the divergence of the electric displacement must be equal to the 
volume density of free charge.  Therefore, 
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Dini = ω  on S         (6) 

 
Here Di is the electric displacement, ni  are the Cartesian components of the unit normal 
to the surface S pointing from the "-" side of the surface out towards the "+" side, and ∈ijk  
are the components of the permutation symbol.  Then the notation  represents the 
difference or jump in the included quantity across the surface S such that 
 

Di = Di
+ − Di
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Furthermore, the electric displacement can be decomposed into two parts such that 
 

Di = κ0 Ei + Pi          (8) 
 

where κ 0  is the dielectric permittivity of free space.   
 

The principles of conservation of linear and angular momentum yield 
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and 
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Thus, for the balance of angular momentum to be satisfied, the sum of the Cauchy and 
Maxwell stresses must be symmetric.  This requirement reflects the fact that moments 



due to mechanical body forces and inertia can be assumed, as usual, to be 2nd order but 
we must allow for the possibility that electric effects induce 1st order moments, e.g. due 
to electric fields acting on dipoles in the material.  Therefore it is possible that both the 
Maxwell and Cauchy stress tensors can be non-symmetric.  In order to satisfy the 
principle of conservation of linear momentum for a small surface element, the Cauchy 
stress in the material, σ ij , must balance the total surface traction such that 
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That is, the Cauchy stress difference across a surface must balance both the electrical and 
mechanical surface tractions where the difference in Maxwell stress across the surface 
represents the electrical traction.  Note that the Maxwell stress is not zero within a crack.  
Thus, there are generally electrical tractions at the surface of a crack and it is critical to 
take these into account to ensure that energy balance is properly handled. 
 

For conservative materials, energy balance as in Eq. (1-3) taking into account Eq. (4-
11) leads to the constitutive relationship for stress 
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where ψ is the stored energy in the material per unit mass and Fij is the deformation 
gradient.  In addition, the energy balance provides the constitutive law for electric field 
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The formulation above is a consistent treatment of the mechanics and electrostatics 

for electroactive materials.  With appropriate forms of ψ, constitutive laws suitable for 
isotropic dielectrics, piezoelectrics, ferroelectrics and electroactive polymers can be 
developed.  Crack problems can then be solved and results obtained for the energy 
release rate.  In parallel, the J-integral can be formulated to encompass the same outcome 
and a full set of tools for the fracture mechanics of electroactive materials is then 
available.  For example, in an infinite, linear, isotropic, brittle dielectric having a through 
crack of length 2a, an applied stress of σA and an applied electric field of EA, the electric 
field in the crack is κEA/κo where κ is the dielectric permittivity of the material.  Due to 
the applied load and the Maxwell traction in the crack, the Mode I stress intensity factor 
is given by 
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The energy release rate and J-integral is  
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where Y ′  is the elastic modulus for plane strain deformation.  A simple brittle fracture 
criterion would involve a critical value for the energy release rate, thereby defining the 
role of the electric field in inhibiting crack growth.  These results are readily extended to 
piezoelectrics, ferroelectrics with switching zone toughening and electroactive polymers. 
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