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ABSTRACT
The mathematical model for plastic deformation by slip is developed. The model is based on the balance
equations for deformation defects. The deformation defects structure is characterised by slip-producing
dislocations, dipole dislocations both of vacancy and interstitial type, interstitials, vacancies and bevacancies.
A package of applied programs for the description of plastic deformation by slip in f.c.c.-materials is
developed. A package of applied programs is used for analysis of role of mechanisms of generation and
annihilation of deformation defect in strain hardening and in evolution of defects structure. The calculations
for single crystal of aluminum, copper and nickel, which are deformed with constant strain rate, were made.
The calculated temperature and rate dependencies of deforming stress are correspond to experimental data.
The value of applied stress decreases when temperature increases. There are intervals of strong and weak
temperature dependence. They correspond to the intensity of annihilation processes by means of deformation
defects of various types. The dependencies of dislocation density and concentrations of point defects on strain
for wide interval of temperature and strain rate are defined. The intervals of strong and weak temperature and
rate dependence can be selected for all type of defects. These intervals correspond to the intervals of strong
and weak temperature and rate dependence for applied stress.

1 INTRODUCTION
The crystallographic s11p zone has been chosen as basic structural element for description of shp
nlasticity_The mecbanisms and recularities of crvstallngraphic slin are described on the hase_of

fundamental physical and topological properties o’ crystal lattice defects realising the plastic mass
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Here Q; = v Zexp(-U ﬁ’") /kT), k is the Boltzmann constant, 7" is temperature, Z = 12, v, is the

Debye frequency, U™ is the migration energy of the k-type point defect, a is the strain rate, g = 8
(31, B = 1/6, o, is the fraction of screw dislocations, 7, is dynamical stress, b is the modulus of

Burgers vector, G is the shear modulus.

2.2 The balance equation for dislocation dipoles
The dislocation loop emitted by a dislocation source expands in its slip plane with an acceleration.
The segments of dislocation, whose orientation is close to screw one, draggs after some run owing
to the point defects generation. When the non screw segments of dislocation loop bow out the
stopping screw segments dislocation dipoles produce [2, 3].
It was taken into account the next mechanisms of dipole dislocations annihilation: the absorption
of interstitials by vacancy dislocation dipoles leads to decreasing of the distance between
dislocation in dipole and their annihilation; the absorption of interstitials on interstitials dipoles
leads to increasing of distance between them and its transformation to slip-produsing dislocations;
the absorption of vacancies and bevacancies by interstitials dipoles leads to decreasing of the '
distance between dislocation in dipole and there annihilation; absorption of vacancies and
bevacancies on vacancies dipoles leads to increasing of distance between them and its
transformation to slip-produsing dislocations.
The balance equations for dislocation dipoles are
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Here O);'f is the friction of the m-type point defect, which annihilate on the j-type sink.
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2.3 The balance equation of slip-producing dislocations
The rate of slip-producing dislocations generation depends of the diameter of a slip zone. The
diameter D of a slip zone is determined by formation of long dislocation barriers [1-2].
The basic mechanisms of annihilation of dislocations are cross slip of screw dislocations and climb
of non-screw dislocations [1-3]. We assume, that screw dislocations do not annihilate up to the
temperature T,; the cross slip at temperatures higher T, is athermal [1-3].
The intensity of transformation of dipole dislocations to slip-producing dislocations is taking into
account. The balance equation of slip-producing dislocations is
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Here [1-3] the parameter F is defined by geometry of dislocation loops and their allocation in slip
zone, D is the average diameter of a slip zone, v is Poisson ratio, 1, is the stress of friction,

LV, < 2 .
P, = Vass l’ V =(@) P, , Pa is the probability of annihilation of
L, ifV, <], 12t ;\t-1,

screw dislocations. The diameter can be estimated as D = B,t/(Gbp,,) where B, is a parameter,
which is defined by the probability of a long dislocation barrier formation, t is the applied stress.

2.4. The equation for strain rate

The equation which connects the strain rate, applied stress and the defect state of crystal for
quasistatic deformation was considered by many writers [1-5]. In the paper the equation for strain -
rate is obtained under assumption of thermally activated movement of a dislocation source up to
critical configuration, which is a semicircle. Past critical configuration dislocation source move
dynamically [5]. The time of slip zone formation is defined by the time of the movement of the
dislocation source up to critical configuration [5]. In this case the equation for strain rate has the
next form [5]:
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B, is the fraction of reacting forest dislocations, o, is the parameter, characterizing of intensity of
dislocation interaction with reacting forest dislocations, 1, is athermic component of dislocation
slip resistance.

3 THE PACKAGE OF APPLIED PROGRAMS FOR THE DESCRIPTION OF PLASTIC
DEFORMATION BY SLIP IN FCC MATERIALS

The set of ordinary differential equations (1-7) is stiff and their decision is a rather nontrivial
problem. Now the specialized mathematical software which allows to decide stiff equations are
existed (for example, Maple, Mathematica, MathCad, MATLAB etc). As a rule, applied programs
use classical methods from Runge-Kutta's method family. These methods allow decision of a
rather wide class of tasks. Also specialised methods for the decision stiff systems of ODE may be
used. But to use this applied software a user must has some experience in work with ODE and
applied programs. The created package of applied programs for the description of plastic
deformation by slip in f.c.c. materials is not required an experience in work with ODE deciding
[6].

In this package the set of mathematical models for various materials and influences as (1-7) is
realised in language Object Pascal in Delphi S as integrated application package under Windows.



The package consists of 4 class hierarchies: one for the representation of ODE systems, a second
for the parameters of an ODE problem, a third class hierarchy for solving initial value problems,
and, at last, class for storing result of experiments in data base. The applied program realisation by
class organisation allows to make the program more flexible for the further updating.

The researcher must to generate the ODE system for compute of laws of plastic deformation in
f.c.c.-materials under deformation. For viewing or change of a set variable, meanings of
parameters, entry conditions of model it is necessary to click mouse only. At formation of the right
part of the ODE system of deformation defects balance the cross effects are taken into account (see
fig 1).
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Figure 1: The widow of package interface

The ODE system is stiff because the processes of generation and annihilation of deformation
defects have essentially different rates. Use of implicit Gear's method of the variable order for
decision the system of ODE is more effective in this case [7], for the beginning of work the
explicit Adams method with the step-by-step control of accuracy is applied.

The results of the carried out calculations, together with the short description of the constructed
model, can be stored in txt-format or with full description in xml! files. Besides, the opportunity of
preservation of results as graphic files of a format *.wmf with the graphic information is
stipulated.

4 MATHEMATICAL MODELING OF TEMPERATURE AND RATE DEPENDENCIES OF
STRAIN HARDENING IN FCC METALS
The results of calculation for deformation with constant strain rate are shown in the fig. 2-4. The
set of equations for calculations include the equations (1-7) and the condition a = const . In this



case the equation (7) for the strain rate is the transcendental equation allowing finding the value of
the deforming stress.
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Figure 2: The dependence of applied stress on temperature for different
metals and for two strain values.

The calculations are carried out for values of model and material parameters, which are
characteristic of copper, nickel and aluminum single crystals [1-3]: & = 2,510 m?2 F=4, vp= _
10° s, a,= 0,45, 2, = 0,3, B, = 0,14, £ = 0,5, 1,= 1 MPa, v = 1/3, ot = 0,33, k = 1,38-102 JK,
Pi=05,7%4=25 &,=03, 14,= ady,,Gbp” 2 agn ~0,3. The initial density of slip-producing
dislocations is equal to 10'2 m?, the initial densities of dislocation dipoles of interstitial and

vacancy type and the initial concentrations of deformation point defects both type are equal to
zero. ’
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Figure 3: The dependence of stress on temperature for strain rate 107 s (a) and 10 5™,
(b) for Cu and for strain values: 1 -0,01;2-0,05;3-0,1;4-0,15; 5-0,2.

The dependencies of applied stress on temperature and strain rate are shown in the fig. 3. The
calculated temperature and rate dependencies of deforming stress are correspond to experimental
data. The value of applied stress decreases when temperature increases. There are intervals of
strong and weak temperature dependence (fig. 3, 4). They correspond to the intensity of
annihilation processes by means of deformation defects of different types. The dependencies of
dislocation density and concentrations of point defects on strain for wide interval of temperature
and strain rate are defined. The intervals of strong and weak temperature and rate dependence can
be selected for all type of defects (fig. 4). These intervals correspond to the intervals of strong and
weak temperature and rate dependence for applied stress.
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Figure 4: The dependence of density of different type defects on strain. The strain rate
is 10* 5! for Cu and temperatures from 25 to 900 K by step 25.
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