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ABSTRACT
An advanced meshless local boundary integral equation method (LBIEM) is presented for computing
dynamic stress intensity factors in continuously nonhomogeneous functionally graded materials (FGMs).
Interior nodes are introduced which are randomly spread in the analyzed domain and each one is surrounded
by a circular subdomain centered at the collocation point. Elastostatic fundamental solutions for
homogeneous materials are applied, which results in a boundary-domain integral formulation. By using
modified elastostatic fundamental solutions vanishing on the boundary of the subdomain, the unknown
traction vector can be eliminated from the local boundary integral equations (BIEs) for all interior nodes. The
spatial variation of the displacements is approximated by the moving least squares (MLS) scheme. Laplace-
transform technique is used to solve the arising initial-boundary problems.

1  INTRODUCTION
Functionally graded materials (FGMs) represent a new class of composites designed to achieve
high performance levels superior to that of homogeneous materials by combining the desirable
properties of each constituent. FGMs have no interfaces or interphases and are hence advantageous
over conventional composites and laminates. They can be applied to a wide range of engineering
structures and components such as electronic devices, corrosion-resistant and wear-resistant
coatings, thermal barrier coatings and biomaterials. The fracture and damage behavior of FGMs is
essential to their integrity, reliability and durability in engineering applications. However, most of
previous investigations on fracture analysis of FGMs have been devoted to static or quasi-static
loading conditions, and only few studies on transient dynamic fracture analysis of FGMs have
been reported in literature due to the complexity of the arising initial-boundary value problems.
    For FGMs with continuously nonhomogeneous material properties, the initial-boundary value
problem of transient dynamic crack analysis is governed by partial differential equations with
variable coefficients. In principle, both the domain-type methods (such as the finite element
method, the finite difference method, and the finite volume method) and the boundary-type
methods (such as the boundary integral equation method and the boundary element method) can be
applied to transient dynamic crack analysis in FGMs. The boundary integral equation method
(BIEM) or the boundary element method (BEM) is especially attractive due to the possible
dimension reduction of a boundary value problem governed by linear partial differential equations.
However, a pure boundary integral formulation is possible only if the fundamental solutions or the
Green´s functions of the original partial differential equations are available in analytical or simple
forms. For homogeneous materials, both time-domain and Laplace-transformed dynamic
fundamental solutions are available. In contrast, for general FGMs, neither time-domain nor
Laplace-transformed dynamic fundamental solutions can be given in closed and simple forms,
which prohibits a successful numerical implementation of the BIEs. To overcome this difficulty,
one can introduce a parametrix or Levi function instead of the fundamental solutions. A parametrix
correctly describes the main part of the fundamental solutions but it is not required to exactly
satisfy the original differential equations. In this paper, an advanced meshless local boundary
integral equation method (LBIEM) is presented for computing dynamic stress intensity factors in



FGMs. In our method, the elastostatic fundamental solutions for homogeneous materials is used,
which results in a boundary-domain integral formulation. Local boundary integral equations
(LBIEs) are then applied to small subdomains, which cover the analyzed domain of the FGMs. On
the artificial boundary of the subdomains lying in the interior of the body, both the displacement
and the traction vectors are unknown. To eliminate the number of unknowns, either the
fundamental solution or the corresponding traction vector should vanish on the boundary of the
subdomains. For this purpose, the method based on the companion solutions is adopted in our
analysis. Laplace-transform technique is used to convert the hyperbolic elastodynamic governing
equations into the elliptical partial differential equations. After solving several quasi-static
boundary value problems for discrete values of the Laplace-transform parameter, the Stehfest´s
inversion method is then used to obtain the time-dependent solutions. The spatial variation of the
displacements is approximated by the moving least-squares (MLS) scheme. The efficiency and the
accuracy of the advanced meshless LBIEM are verified by numerical examples for dynamic crack
analysis in FGMs.

2  PROBLEM STATEMENT AND LOCAL BOUNDARY INTEGRAL EQUATIONS
Let us consider an isotropic, non-homogeneous and linear elastic solid with Young´s modulus E(x)
being dependent on Cartesian coordinates and the Poisson´s ratio ν  being constant. In this case,
the elasticity tensor can be written as
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In eqns (1) and (2), µ(x) represents the shear modulus, and δij denotes the Kronecker delta. In
terms of displacements, the equations of motion for a non-homogeneous solid can be written as
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where iu  and iX  are the components of the time-dependent displacement and body force
vectors, ρ is the mass density of the material, a comma after a quantity represents spatial
derivatives, while superscript dots indicate partial derivatives with respect to time, respectively.
Application of  the Laplace-transform to the equations of motion (3) yields
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is a redefined body force vector in the Laplace-transformed domain with the initial boundary
conditions for the displacements ( )iu x  and the velocities ( )iu x , and p is the Laplace-transform
parameter.
By using elastostatic fundamental solutions for homogeneous materials, we obtain the following
integral representation for the displacements [1]
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where ( , )ijU x y  and ( , )x yijT  represent the elastostatic displacement and traction fundamental
solutions for a homogeneous material with 1µ = , and
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is the traction vector with the unit outward normal vector in to the boundary Γ .
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Fig. 1: Local boundaries, support of nodes and domain of definition of the MLS approximation

If, instead of the entire domain Ω of the given problem, we consider a sub-domain sΩ  (see Fig.
1), which is located entirely inside Ω , we obtain the following integral representation for the
displacements in the interior of sΩ
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where s∂Ω  is the boundary of the sub-domain sΩ . Collocating the integral representation (7) at
interior nodes s s∈ Ωy  in a meshless approach with an approximation of the displacement field,
LBIEs for computing the unknown nodal values are obtained.
On the artificial boundary s∂Ω , both the displacement and the traction vectors are unknown. If the
fundamental solutions Uij(x,y) were vanishing on the boundary of the sub-domain s∂Ω , the
integral containing the traction vector could be eliminated. This can be archived by using a
companion solution [2]. The companion solution ijU is associated with the elastostatic
displacement fundamental solutions ijU and is the solution to the following equations

     , 0imkl kj lmc U =      on s′Ω ,     ij ijU U= on s′∂Ω ,                                                               (8)

with s′Ω  being a circle of the radius 0r , which coincides with sΩ  for interior nodes (see Fig. 1).

The modified displacement fundamental solutions *
ij ij ijU U U= −  have to satisfy the same



governing equations as for ijU . On the boundary of the circular domain s′∂Ω , these fundamental
solutions are identically zero due to the second condition in (8). Hence, eqn (7) can be rewritten as

* 2 *1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( )

s s

j ij i i i i iju p T u p d F p g p p u p U dρ
µ∂Ω Ω

⎡ ⎤= − Γ + + − Ω⎣ ⎦∫ ∫y x y x x x x x y
x

      (9)

for the source point y  located inside sΩ ⊂ Ω . Explicit expressions for the modified elastostatic
fundamental solutions *

ijU  and *
ijT  can be found in [3]. If  a source point is located on the global

boundary s sζ ∈ Γ ⊂ Γ , the LBIEs can be written as
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3  A MESHLESS METHOD FOR LOCAL BOUNDARY INTEGRAL EQUATIONS

A numerical solution procedure for solving the LBIEs (9) and (10) is developed. The method is a
meshless method, which is based on the moving least squares (MLS) approximation. According to
the MLS scheme, the function to be approximated can be written as [4]
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in which ( )jφ x  denotes the shape functions associated with node j, and ˆ ( )j pu  are fictitious
parameters. Substitution of the MLS approximation (11) into eqn (6) yields the following
approximation formula for the traction vector
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where the matrix N(x) corresponds to the normal vector at x, D is the stress-strain matrix and the
matrix jB (x) represents the gradients of the shape functions at x.
Substitution of the MLS approximations (11) and (12) into the LBIEs (9) and (10) leads to a
system of linear algebraic equations for ˆ ( )j pu . Then, the displacement and the stress components
at any point can be computed numerically for discrete values of the Laplace-transform parameter.
Subsequently, the corresponding time-dependent solutions can be obtained by an inverse Laplace-
transform. In the present analysis, the sophisticated Stehfest´s algorithm [5] is applied.

4  NUMERICAL EXAMPLES AND DISCUSSIONS
As numerical examples, we consider a rectangular plate with an edge crack as depicted in Fig. 2.
The plate has the length 2 30h = , width 10b = , and crack length a = 0.4b. At the top and the
bottom sides of the plate, a uniform impact tensile stress 22 ( ) ( )t H tσ σ=  is applied. The elastic
modulus is assumed to have an exponential graduation described by

1 1 1( ) exp( )E x E xγ= ,           10 x b≤ ≤ ,                    (31)

where 1 (0)E E= , 2 ( )E E b=  and ( )1
2 1ln /b E Eγ −= . Poisson´s ratio is taken as 0.25ν = and
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Fig. 2: Node distribution in an half of a rectangular plate with an edge crack

Due to symmetry of the geometry and the loading, only one half of the plate as shown in Fig. 2 is
analyzed by the LBIEM. In this case, only the mode I dynamic stress intensity factor occurs. The
LBIEM model consists of total 230 nodes which include 61 boundary nodes. The node density is
progressively increasing towards the crack-tip. For convenience, the dynamic stress intensity
factor is normalized by its corresponding static value stat
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Fig. 3: Normalized dynamic stress intensity factor for a FGM plate with 2 1/ 5E E =

To test the accuracy of the present meshless LBIEM,  a static loading is first considered. The
normalized stress intensity factors for different ratios of 2 1/E E  are compared with those by Kim
and Paulino [6] and our FEM analysis by using a very fine mesh with 5472 quadrilateral 8-node
elements and 16723 nodes in the commercial NASTRAN code. Our numerical results agree very
well with those obtained by FEM. Another check has been made for a cracked homogeneous plate
under an impact tension. The same node number and distribution as in the static loading case have

2h

b

a

σ22(t) = σ H(t)



been used. The Stehfest´s method for the Laplace inversion is applied. Numerical results are
compared with those provided by the NASTRAN code, which show again a quite good agreement.
For a cracked FGM plate under an impact tensile loading, numerical calculations have been carried
out for a constant mass density 21 /kg cmρ =  and two different ratios 2 1/ 5E E =  and 0.2. The
corresponding normalized dynamic stress intensity factors are presented in Figs. 3 and 4 versus
time. The first peak of the mode I stress intensity factors increases with increasing gradient
parameter γ . A comparison of our numerical results with that obtained by the FEM-NASTRAN
code shows a fairly good agreement.
In conclusion, the meshless LBIEM presented in this paper provides an accurate and efficient
numerical tool for computing transient dynamic stress intensity factors in FGMs.
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Fig. 4: Normalized dynamic stress intensity factor for a FGM plate with 2 1/ 0.2E E =
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