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ABSTRACT

A gradient damage formulation for quasi-brittle damage is derived from a nonstandard expression for the free
energy potential. In contrast with many existing approaches, the nonstandard terms are related to the kinematics
of the problem and therefore come into play already in the elastic regime. Following the argument that the
second law of thermodynamics need only be satisfied globally for a nonlocal continuum, an energy balance
equation is derived which must be solved together with the usual equilibrium equations. Numerical solutions
of this coupled set of equations have been generated for a one-dimensional problem in order to study the
localisation behaviour of the formulation. In the limit where the elastic modulus related to the energy balance
goes to zero, an earlier gradient damage model is retrieved.

1 INTRODUCTION
The degradation and fracture of concrete, ceramics, fibre-reinforced polymers and other quasi-brittle
materials can be successfully modelled using nonlocal and gradient damage theories. The presence
of some form of nonlocality in these theories is crucial in avoiding pathological localisation effects.
The nonlocality can take the form of integral relations between the internal variables of the theory,
as first proposed by Pijaudier-Cabot and Bažant [1], or of gradients of internal variables or strain,
a suggested in plasticity by Aifantis [2]. Theories of the latter class are usually weakly nonlocal.
This means that the spatial interactions provided by them are limited to infinitesimal distances. The-
oretical arguments and numerical solutions suggest that this type of nonlocality may be too weak to
eliminate pathological localisation effects in the limit of complete failure of the material [3]. Integral
formulations are strongly nonlocal by definition and therefore do not suffer from this shortcoming.
However, they lead to governing equations which are of the integro-differential type and which do
not fit very well in the classical framework of nonlinear computational mechanics. The so-called
implicit gradient damage formulation proposed by Peerlings et al. [4] eliminates this disadvantage.
It replaces the spatial averaging used in the integral formulation by a partial differential equation
which must be solved simultaneously with the partial differential equations which describe equilib-
rium. Although the resulting theory has some similarity with the gradient theories indicated above, it
can be shown to provide strong nonlocality [5] and has been used successfully to model quasi-brittle
fracture, see e.g. refs [6, 7].

Although it can be motivated heuristically by micromechanical arguments, the physical im-
plications of the additional partial differential equation which enters the implicit gradient theory is
not immediately clear. This becomes particularly apparent in the boundary conditions which must
accompany it, and for which a rigorous physical interpretation has been missing. This paper is an
attempt to partially fill this gap. It draws on ideas put forward by, among others, Svedberg and
Runesson [8], Polizzotto and Borino [9], Lorentz and Andrieux [10] and Liebe et al. [11], who
proposed thermodynamical frameworks for nonlocal and gradient formulations in plasticity and



damage. Common to these theories is the notion that nonlocality allows the direct and instanta-
neous exchange of energy within the continuum. As a consequence of these energy exchanges, the
Clausius-Duhem inequality may no longer be satisfied in its classical, pointwise form. Requiring it
to hold globally, for the entire body, then allows to construct equations which govern the nonlocal
energy transfer. Following this strategy for a particular form of the free energy function, an implicit
gradient damage theory can be derived which is very similar to that of ref [4]. It will be shown that
exactly this theory can be recovered as a limit case. The nonstandard partial differential equation of
the original theory is obtained as a natural outcome, and the boundary conditions associated with it
get a clear physical interpretation in terms of energy flow.

2 THERMODYNAMICAL BASIS
As a starting point of our development we postulate a Helmholtz free energy functional of the form

ψ(ε, ε̄, D) = 1
2 (1 − D) ε :C :ε + 1

2h(ε̃ − ε̄)2 + 1
2hl

2‖ �∇ ε̄‖2. (1)

The first term in this expression is classical in damage mechanics. In it, ε denotes the linear strain
tensor and C is the (undamaged) elasticity tensor; the isotropic damage variable D degrades the
elastic stiffness. In the second and third terms of (1), ε̃ is a scalar invariant of the strain tensor which
is relevant in terms of the degradation process, see e.g. [6], whereas ε̄ is at this stage considered as
an independent field variable and is termed nonlocal strain. It can be immediately seen from (1) that
differences between ε̃ and ε̄ as well as gradients of ε̄ are penalised and that ε̄ will thus tend to be
smoother than ε̃. The parameters h and l, which govern the relevance of the nonstandard terms, are
positive and have the same dimension as Young’s modulus and the dimension of length respectively.

Expression (1) differs from earlier proposals by Lorentz and Andrieux [10] as well as Liebe
et al. [11] on two important aspects. Firstly, the nonstandard quantity ε̄ which, as we will see below,
carries the nonlocal interactions, is not attached to an internal variable of the damage influence, but
is a ‘deformation-like’ variable, although it is not directly linked to the kinematics. And secondly,
partially as a consequence of this relation to the deformation, ε̄ and the nonlocality described by it
are active in the entire body, even in those parts in which no damage has occurred yet. This contrasts
with the gradient of damage used in refs [10] and [11], which evolves only in the process zone where
damage grows. It should also be mentioned that, unlike for instance Benvenuti et al. [12], we do not
define the relation between ε̃ and ε̄ a priori. On the contrary, this relationship and the precise role
played by ε̄ will emerge as a result of our development.

Using the free energy potential according to (1), the constitutive relations can now be developed
by considering the global Clausius-Duhem dissipation inequality

Ḋ :=
∫

V

(
σ : ε̇ − ψ̇

)
dV ≥ 0. (2)

Note that in accordance with the statements made above, the integration involves the entire body
volume V and not only the process zone. Differentiation of (1) with respect to time and substitution
into (2) yields

Ḋ =
∫

V

[
σ − (1 − D)C :ε − h(ε̃ − ε̄)N

] : ε̇ dV +
∫

V

[
h(ε̃ − ε̄) ˙̄ε − hl2 �∇ ε̄ · �∇ ˙̄ε

]
dV

+
∫

V

1
2 ε :C :ε Ḋ dV, (3)



where N = ∂ε̃/∂ε. Since the ε̄ and �∇ ε̄ fields cannot be varied independently, the term involving the
latter quantity is integrated by parts, resulting in

Ḋ =
∫

V

[
σ − (1 − D)C :ε − h(ε̃ − ε̄)N

] : ε̇ dV +
∫

V

h
[
ε̃ − ε̄ + l2∇2ε̄

] ˙̄ε dV

−
∫

S

hl2 �∇ ε̄ · �n ˙̄ε dS +
∫

V

1
2 ε :C :ε Ḋ dV, (4)

where S denotes the boundary of V and �n is the outward unit normal to S.
Now following the usual arguments the first integral vanishes by assuming the stress-strain

relation
σ = (1 − D)C :ε + h(ε̃ − ε̄)N . (5)

The first term of this relation is classical; the second is not and is related to the nonlocality. Note that,
contrary to most nonlocal and gradient damage theories, this nonlocal contribution is active already
in the elastic regime, before any damage has developed. Accordingly, the elastic behaviour of the
present formulation will deviate from standard linear elasticity. When there is no damage growth,
i.e. when Ḋ = 0 in V , the last integral in (4) also vanishes. In this case the behaviour of the model
should be elastic and we should thus have Ḋ = 0. The following conditions are sufficient for this to
hold:

h
[
ε̃ − ε̄ + l2∇2ε̄

]
= 0 in V, (6)

hl2 �∇ ε̄ · �n = 0 on S. (7)

These equations form a boundary value problem in terms of the nonlocal equivalent strain ε̄ which
must be solved together with the standard equilibrium equations. The two sets of equations are mu-
tually coupled through the appearance of ε̃ in (6) and of ε̄ in (5). Physically, eqn (6) determines
the amount of energy which is available for nonlocal energy exchanges within the body. It is em-
phasised that this equation must hold on the entire domain V , i.e. in elastic regions as well as in
possible process zones, and that energy may thus also be exchanged between elastic and damaging
material. Eqn (7) expresses that there can be no energy exchange across the boundary as a result
of the nonlocality, cf. the insulation condition of Polizzotto and Borino [9]. Note that (7) must be
applied at the external boundary of the body and not at the boundary of the process zone, which is a
considerable advantage in numerical implementations since the process zone will generally change
in time.

Having established the nonstandard balance equations (6)–(7), the dissipation inequality can
finally be written as

Ḋ =
∫

V

Y Ḋ dV ≥ 0, (8)

where the damage energy release rate has been defined as

Y = 1
2 ε :C :ε. (9)

Given the fact that Y ≥ 0, the usual condition that damage can only increase, i.e. Ḋ ≥ 0, is sufficient
for (8) to hold. In the absence of damage growth, no dissipation is taking place and eqns (5)–(7) can
be regarded as an implicit gradient elasticity model.



Following our earlier work, the limit of the elastic regime is defined here in terms of the non-
local equivalent strain by assuming the following damage criterion [4]:

f (ε̄, κ) = ε̄ − κ ≤ 0. (10)

Damage can grow only if the equality sign holds and remains constant for f < 0. The history
variable κ follows from the Kuhn-Tucker relations

f ≤ 0, κ̇ ≥ 0, f κ̇ = 0 (11)

and an initial value κ |t=0 = κ0 which indicates the initial elastic domain. It can easily be seen that
κ is always equal to the highest ε̄ experienced locally during the loading history – or to the initial
value κ0 if this value has not been reached yet. Since κ can never decrease, the damage variable can
be related directly to it: D = D(κ). Consequently, nonlocal energy exchanges either contribute to
the growth of damage or to the increase of elastically stored energy elsewhere.

3 LOCALISATION BEHAVIOUR AND COMPARISON WITH EARLIER THEORY
In order to study the localisation behaviour of the damage model developed above, numerical so-
lutions have been generated for a one-dimensional problem which was used before in ref [4] and
elsewhere. We consider a bar of length 100 mm and a uniform cross section, except for a 10 mm
zone in the centre, where the cross section area has been reduced by 10% in order to trigger lo-
calisation. Young’s modulus of the material is taken to be E = 20 000 MPa and in the reference
computation the higher-order modulus h is set equal to E . The length parameter is l = 1 mm.
The equivalent strain is set equal to the axial strain, and the damage evolution law is defined such
that it results in linear softening in the uniform case, see ref [4] for details and parameter values. A
uniform finite element discretisation of 200 elements has been used, with a quadratic interpolation
of the displacement and a linear interpolation of the nonlocal equivalent strain. The computation
was controlled using an indirect displacement control method combined with an automatic stepsize
selection.

Fig 1 shows the distribution of the strain and nonlocal strain at several stages of the computation
for the reference case where h = E . The gradient terms in the constitutive model clearly lead to
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Figure 1: Evolution of the local strain (left) and nonlocal strain (right) for h = E
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Figure 2: Stress in the bar vs end displacement for a range of higher-order moduli h; the dashed
curve represents the simplified model of ref [4]

the development of a relatively wide band of intense deformation, rather than the localised solution
within the imperfection that would occur without these terms. It is interesting to note that there is
very little difference between the strain ε and the nonlocal strain ε̄. The relatively high value of h
clearly forces these fields together. For lower values of h, the difference between ε and ε̄ indeed
becomes more pronounced and the strain distribution is more localised.

Fig 2 shows the load-displacement curve obtained in the reference computation, as well as for
decreasing values of h. The dashed curve in this diagram (h → 0) has been obtained using our
earlier theory as described in ref [4]. The response of the present, thermodynamically consistent
gradient formulation clearly approaches this curve as h is diminished. This can be understood as
follows. For any positive h and l, eqns (6)–(7) can be divided by h and hl 2 respectively. The
resulting equations are exactly the same as those proposed in [4]. The only difference between the
theory described in [4] and the present theory is therefore the nonlocal contribution to the stresses,
i.e. the last, nonstandard term in eqn (5). If we now consider the limit h → 0 and assume that the
difference between the local and nonlocal equivalent strains remains finite, this term disappears and
the stress-strain relation of [4] is thus retrieved. Physically, taking the limit h → 0 can be interpreted
as gradually ‘switching off’ any nonlocal effects in the elastic regime, while preserving the ability
of the elastic region to influence damage growth in the process zone. It can easily be verified that
the simpler theory which is thus obtained satisfies the energy balance and the dissipation inequality
and is therefore also thermodynamically admissible.

4 CONCLUDING REMARKS
We have shown that a theory which is very similar to our earlier proposal in [4] may be derived via
thermodynamical principles if a very specific form of the free energy potential is assumed. In the
limit where the nonstandard modulus h vanishes, this theory reduces to the one proposed in [4]. The
thermodynamical basis which has thus been given to this theory provides a clearer physical inter-
pretation of the equations which govern its spatial interactions. The nonstandard partial differential
equation (6) describes instantaneous energy transfer between material points (at a length scale given
by l), whereas the boundary condition (7) inhibits such a transfer across the boundary of the body.

In its full form as developed here – i.e. for finite h – the theory still shows some shortcomings
when pushed to the limit of complete fracture (D → 1). In particular, some residual strength remains



in this limit (fig 2), whereas damage models classically predict vanishing stresses for D = 1. Related
to this, the free energy does not go to zero in this limit. Both effects are caused by the fact that the
terms that have been added to the free energy in order to describe nonlocal interactions do not
depend on the damage variable. In reality, it can be very well imagined that the development of
damage influences – or more specifically: degrades – the ability to relay energy fluxes. However,
in the limit h → 0 these effects vanish and the simplified formulation which may be obtained in
this limit does not suffer from them. We believe that this theory allows to capture the most essential
nonlocal mechanism in a way motivated by the full model and may therefore yield realistic results
in many practical cases.
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