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ABSTRACT 

Crack growth along an interface between an elastic-plastic solid and an elastic substrate is analysed 
numerically by using a special cohesive zone formulation, in which the modified Gurson model is applied to 
describe ductile failure. Small scale yielding conditions are applied with mixed mode loading prescribed on 
the outer edge of the region analysed. 
 

1. INTRODUCTION 

For interface crack growth by a ductile failure mechanism special cohesive zone elements are used 
to represent the fracture process zone. The modified Gurson model is used in the cohesive zone 
elements to represent the nucleation and growth of voids to coalescence, as has been done for 
symmetric mode I loading by Tvergaard [1]. In the present study for mixed mode loading on a bi-
material interface a small scale yielding formulation is used, with the corresponding displacement 
fields prescribed on the outer boundary of the region analysed, as in [2,3]. 
     In relation to the finite element mesh the initial width of the interface is taken to be zero, but the 
traction separation relations represented by the cohesive zone are based on assuming an interface 
width of the order of the void spacing. The present study for an interface between an elastic-plastic 
solid and an elastic substrate is a continuation of the studies by Tvergaard [4] for an interface 
between dissimilar elastic-plastic materials. A somewhat related cohesive zone formulation has 
been used by Siegmund and Brocks [5], where the level of the stress triaxiality to be used in the 
Gurson model is taken from the stress level in the material adjacent to the cohesive zone. The 
present cohesive zone model formulation does not make use of field quantities from the 
neighbouring finite elements, but instead continuity of the longitudinal strain along the band is 
required, across the band interfaces, and this compatibility requirement together with the loads 
carried across the interface determines the evolution of stresses and strains in the interface layer. 
 

2. COHESIVE ZONE MODEL FOR DUCTILE FAILURE 

The initial width of the special cohesive zone for ductile failure is taken to be zero, as in other 
cohesive zone calculations [2,6], but the traction-separation properties of the cohesive zone 
elements are calculated based on a background element with the non-zero initial width   . Fig. 1a 
illustrates the finite element mesh near the crack plane, with the background interface element 
sketched in, while Fig. 1b indicates the configuration if this interface element is attached to the 
surrounding elements as a common element. The displacement components on the top side of the 
element are denoted by  u   and  
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n
+

tu
+  , respectively, while those on the bottom side of the element 

are denoted by    and    (see Fig. 1a). These displacements are required to be compatible with nu
−

tu
−



the displacements on the edge of the adjacent finite elements. Then, with the assumptions that the 
displacements inside the interface element vary linearly through the element width (in the 2x -
direction) and with the gradients replaced by their averages through the element width, the 
displacement gradients inside the elements are approximated as 

)f

 

2
2 2

0 0

1 ,ttu u u u u u

x w x w
n n

− + −+∂ ∂
= =

∂ ∂

− −
                                            (1) 

2
1 1

1
1 1 ,1 1

2 2
t t

u uu u
11

n nuu
x x xx xx

+ +− −
=

∂   ∂∂ ∂∂
= +   ∂ ∂ ∂∂ ∂ ∂  

+ ∂
                                   (2) 

 
     From the expressions (1) and (2) for the displacement gradients, and from their increments, it is 
possible to determine the current metric tensor   , the Lagrangian strain tensor  ijG ijη   and its 

increment  ijη   in any point on the middle surface,  2x 0=  , of the interface element, and thus a set 
of constitutive relations can be used to calculate the evolution of stresses and the evolution of 
damage inside the interface. These constitutive relations are based on the modified Gurson model 
[7,8], which makes use of an approximate yield condition for the porous solid is of the form 
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where    and   . The void volume fraction is  f  and    is a 
function that approximately describes final failure by void coalescence. 
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     The numerical solutions are obtained by a linear incremental finite element model, based on the 
incremental principle of virtual work. As described in [1,4], an extra parameter    is introduced, to 
be able to reduce the tangential components of the nodal forces calculated by the interface element 
procedure described above. The tensile or compressive stress components  

0r

11σ   along the interface 
layer are already fully accounted for in the finite element mesh outside the interface, due to the 
somewhat artificial overlap of the background interface element with the neighbouring element mesh  

 
Fig. 1. Interface elements along the crack plane. (a) Shows the artificial overlap between interface 
elements and surrounding elements. (b) A corresponding configuration with no overlap. 



(see Fig. 1a). On the other hand, the full size of the nodal forces normal to the interface is needed to 
carry the loads on the interface, and in the case of mixed mode loading the same is true for the part 
of the nodal forces tangential to the interface that results from shear loads on the interface. 
     The nodal forces on the top side of the interface element are denoted    and  nP

+
tP
+  , 

respectively, taken to be positive in the direction of  nu
+   and  nu

−  , and on the bottom side the force 
components    and    are positive in the directions of  unP

−
tP
−

n
−   and  ut

−  . The nodal force 
components calculated by the standard element procedure are denoted by  ( )elm

 . For full mixed 
mode loading on the interface the reduction in the symmetric part of the tangential nodal forces 
obtained from the interface element is specified by taking the forces  tP

+   and    to be given by 
[4] 
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where    will be used, as this gives a representation of an initially sharp crack [1]. The value 

of the initial width    of the strip (Fig. 1) is non-zero, representing about  0.7  times the initial 
void spacing. 

0 0r =

0w

     The crack is taken to grow along the interface between two materials, where material No. 1 is 
elastic-plastic, described by  2J  flow theory, with the material parameters   ,  1E 1ν  ,  1Yσ   and  

 , while the substrate, material No. 2, is elastic with    and  1N 2E 2ν  . In all analyses here, the 
values of the material parameters inside the interface elements are taken to be identical to the 
values in material No. 1, thus representing a situation where failure occurs in the softer elastic-
plastic material. Conditions of small scale yielding are used. The elastic singular fields, with 
amplitudes in the form of two stress intensity factor components  IK   and  IIK   [2,3], have an 
oscillating singularity at the crack-tip. On the outer edge of the region analysed the displacement 
components corresponding to these fields are prescribed. For the presentation of results, a reference 
value of the J-integral is defined as  0 1Y 0J wσ=  , and the corresponding reference stress intensity 
factor (with the second Dunders’ parameter  β  ) is defined as 
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Fig. 2. Interface crack growth resistance curves for  0.01If =   and   . 0Nf =



A length quantity   , which scales with the size of the plastic zone in material No. 1 is defined in 
terms of  

0R

0K   or  0J   as 
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3. RESULTS 

The properties of material No. 1 are specified by  1 1/ 0.00Y E 2σ =  ,  1 0.3ν =   and   , and 
these values of the material parameters are also used in the interface elements. The elastic substrate 
has  

1 0.1N =

2 0.3ν =   and is chosen to focus on a situation where the substrate has much higher elastic 
stiffness than that of material No. 1, such that  2 1/ 1000E E =  . In the first set of calculations the 
porous ductile material inside the interface elements is taken to have voids present from the 
beginning, with the initial void volume fraction  0.01If =   and no void nucleation, and the 
additional parameter value in (3) is chosen as  1q 1.25=  . The amount of crack growth    will 
here be normalised by the width  w   of the interface elements. It is noted that the reference length 
defined in (7) has the value   , and that the mesh refinement in the computations is 
chosen so that   . 

a∆

0

0 12R = 06.8w

0 0 / 2w∆ =
 Computed crack growth resistance curves are shown in Fig. 2 for these values of the material 
parameters. The different resistance curves correspond to external loading with different mode 
mixity, as measured by the angle  0ψ   that is defined in detail in [2,3,4]. It is noted that for  

  the conditions near the crack-tip are close to pure mode I loading ( I
o

0 0ψ = K   dominates), while 

for    there is a significant contribution from  o00ψ ≠ IIK   in addition to  IK   (negative when  0ψ   is 
negative and vice versa). It is seen in Fig. 2 that the lowest resistance curves are found for  

  or   , i.e. close to   . For larger negative or positive values of  o
0 0.4ψ = o

0 5.3ψ = − o0 0ψ   the 
crack growth resistance is higher. But it is noted that since there is no material symmetry about the 
crack plane, the resistance for a negative value of  0ψ   differs from that for the same positive value 
of  0ψ  . 
 

 
 

Fig. 3. Interface crack growth resistance curves for  0If =  , 0.04Nf =  ,  0.1Nε =   and   . 0.1Ns =



 In the case of Fig. 3 there are no voids initially in the cohesive elements along the interface,  
 , but plastic strain controlled nucleation of new voids takes place, as specified by a normal 

distribution with the volume fraction  
0If =

0.04Nf =   of void nucleating particles, the mean strain for 
nucleation  0.1Nε =   and the standard deviation  0.1Ns =  . Here, the crack growth resistance 
keeps growing in the whole range analysed, and the resistances reached are significantly higher 
than those in Fig. 2. Again the lowest resistance curves correspond to the values    or    
of the angle  

o0.4 o5.3−

0ψ  , in most of the range considered. Also, for higher or lower values of  0ψ   the 
crack growth resistance increases. 

The values of the material parameters in Fig. 4 are identical to those in Fig. 3, apart from the 
smaller volume fraction of void nucleating particles,  0.02Nf =  , and the larger value of the mean 
strain for nucleation,  0.2Nε =  , inside the cohesive elements. This difference has a large effect as 
is seen by the much higher crack growth resistances predicted in Fig. 4. 

The results in Figs. 2, 3 and 4 can be compared with results in [4] for the same set of material 
parameters in material No. 1 and in the cohesive zone, but for an elastic-plastic substrate specified 
by    and  2 1/E E = 2 22 1/Y Yσ σ =  . It is found that the much higher elastic stiffness and the lack of 
plastic deformations in the substrate gives significantly higher resistance to interface crack growth. 

The dependence of the crack growth resistance on mode mixity is illustrated in Fig. 5 by the 
values of the fracture toughness after a specific amount of crack growth,  0/ 1a w 0∆ =  , vs. the 
angle  0ψ  . As in the cases considered in [4] it is seen that the minima of the three curves occur 
near the axis   , while larger toughness is found in the range of both negative and positive 
values of  

o
0 0ψ =

0ψ  . 
 

 
Fig. 4. Interface crack growth resistance curves for  0If =  , 0.02Nf =  ,  0.2Nε =   and   . 0.1Ns =
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Fig. 5. Interface toughness  10J  , at the point of the resistance curves where  0/ 1a w 0∆ =  , shown 
to indicate the dependence of toughness on the mode mixity parameter  0ψ  . 


