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ABSTRACT 
A new cohesive-zone model is presented based on the combination of an elastic-damage formulation, which 
simulates the interface decohesion, and a friction contact model. The classical mesomechanic assumption is 
made whereby a representative area of the interface can be additively decomposed into an undamaged part 
and a damaged part, so that the ratio between the damaged part and the total area represents a damage 
parameter ranging from 0 to 1. The main idea consists of adding a Coulomb-like friction term for the stress 
only on the damaged part of the interface, while the decohesion model takes into account mixed-mode 
fracture and specializes to piecewise linear interface laws for pure-mode problems. Numerical results are 
presented for the simulation of a benchmark test for the analysis of concrete dams, in which the proposed 
model is used to simulate the behaviour of the soil-concrete interface at the base of the dam.  

1. INTRODUCTION 
Cohesive-zone models have been widely used, in the last decades, to model fracture and 

debonding problems in many areas of computational mechanics. For many of such problems 
friction can significantly increase the energy dissipated in mode II and should be suitably taken 
into account in a reliable numerical model. This has often been done in the literature by 
introducing a non-associative plasticity formulation, with softening, in the interface relationship 
used (see Cocchetti et al. [1], or Bolzon and Cocchetti [2]).  

In this paper, a new approach for taking into account the influence of friction on the interface 
behaviour is described. It is based on the observation that, using a Kachanov interpretation of 
damage, an additive decomposition of a representative elementary area (REA) A of the interface 
into a damaged part Ad and an undamaged part Au can be assumed at a mesoscale level, whereby a 
damage parameter D can be introduced. In accordance with this assumption, it is supposed that 
friction occurs only on the damaged part Ad of the REA, in accordance with a Coulomb-like 
friction law. The evolution of the damage parameter D is obtained by applying the interface model 
derived by Crisfield and his co-workers in [3], in the modified form presented by Alfano and 
Crisfield in [4].  

The interface model is implemented in the finite element code LUSAS and the results of a 
numerical simulation of a benchmark test for concrete dams analysis are presented in order to 
assess the reliability and the efficiency of the proposed model. 

2. INTERFACE MODEL 
Two-dimensional problems are considered in this paper, whereby the interface is a line of the 
initial configuration, and a local reference system is point wise introduced with axis 1 normal to 
the interface and axis 2 direct along its tangent [4]. A relative-displacement vector s is defined at 
each point of the interface which is null in the initial configuration. Accordingly, the relative 
displacement can be decomposed into its components along the axes, s1 and s2. 

At a mesoscale level, a representative elementary area (REA) of the interface is partitioned into 
an ‘undamaged’  part Au and a ‘damaged’  part Ad ; in the undamaged part the interface is fully 
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bonded while in the ‘damaged’  part a unilateral fiction contact occurs. Denoting by A the area of 
REA and by  D the ratio D = Ad  /A  the following relationship holds (see figure 1):  

AAA du =+ . (1) 

 
 
 
 
 
 
 
 

Figure 1: Representative elementary area of the interface. 
 
Further hypotheses concerning the kinematics of the interface model are introduced. Firstly, the 

relative displacement is assumed to be constant over the entire REA. Hence denoting by us  and  
ds the relative displacement vectors on the two parts uA  and dA , respectively, it follows that 

sss == du . Secondly, the relative displacement in the ‘damaged’  part is additively split into an 
elastic part des  and an inelastic part dis , so that dided sss += , whereas on the undamaged part 
the relative displacement is assumed to be totally elastic: sss == ueu . 

On either part, the interface stress is supposed to be constant, although it is generally different 
on the undamaged and on the damaged parts. On the undamaged part of the REA the interface 
stress is denoted by u

�  and is related to ss =ue  by the linear elastic relationship: 

 sK� =u , (2) 

where [ ]iKdiag=K  is a diagonal matrix which collects the stiffness values in all of the modes. 
These can be chosen in the range which ensures a good prediction of the undamaged behaviour of 
the interface and avoids ill conditioning.  

On the damaged part, the interface stress is denoted by d
�  and is related to dide sss −=  by 

the following linear elastic relationship: 

( )did ssCH� −= , (3) 

where ( )( )[ ]2111diag H,Hsh−=H , with the stiffness values iH  being possibly different from 

iK , and the symbol ( )•h  denoting the Heaviside function. The term  ( )11 sh−  is then equal to 
unity in the case 01 <s , and equal to zero in the case 01 ≥s , so as to take into account the 
unilateral nature of contact.  

The total (homogenised) value of the interface stress over the REA will be indicated by �  and 
is obtained by weighting the two values u

�  and d
�  as follows: 

( ) du DD ��� +−= 1 . (4) 

The two components of the stress �  represent the normal and the tangential interface stresses, 
respectively, and are accordingly denoted by �  and τ , so that : 
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The inelastic relative displacement dis  physically represents the inelastic sliding which has 
occurred on the damaged part of the REA and is accompanied by dissipation due to friction. 
Hence, the following ‘ friction’  yield function is introduced:  

( ) ddd τσµφ +=
−

� , (6) 

where µ  is the friction coefficient and −•  denotes the negative part of • . 

The evolution of dis  is governed by the following non-associative relationship: 
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with the additional Kuhn-Tucker conditions: 

0≥λ
�

               ( ) 0≤d
�φ               ( ) 0=d

�φλ
�

 (8) 

In order to fully define the interface model, the formulation initially proposed by Crisfield and 
his co-workers in [3] is used to obtain the evolution law for the damage parameter D. This model 
can be described starting from the two pure-mode relationships depicted in figure 2, with figure 2.a 
relating to mode I and figure 2.b relating to mode II. Input parameters of the laws are, for each 
mode, the values ciG , ois  and oiσ , which represent the fracture energies, the first ‘cracking’  
relative-displacement components and the peak values of the related traction components, which 
are denoted in the figures as oσ  and oτ , respectively. 

Since the areas enclosed by each bilinear law of figure 2 are equal to the fracture energies ciG , 

the ‘critical’  relative-displacement values are then equal to oicici s/Gs 2= . 
Following Alfano and Crisfield [4], the hypothesis that 2211 coco s/ss/s =  is made. This can 

be justified by considering that the parameters 1os  and 2os  are input parameters which are related 
to the initial pure-mode stiffness values iK  by the relationship  ioioi K/s σ= . It has been earlier 
observed that iK  can be viewed as numerical ‘penalty’  stiffness values which can be chosen in a 
certain range. For most of the problems of engineering interest, in such range there exist two 
stiffness values which imply fulfilment of 2211 coco s/ss/s = . Accordingly, the following 
parameter η  is introduced: 
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and, for a general mixed-mode decohesion process, a damage parameter D is introduced as a 
function of the history of the total relative displacement as follows: 

D
~

D
history
max= ,                             (10) 

 

 

 

 

 

 

 

Figure 2: pure-mode interface relationships. 
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with +• denoting the positive part of • . 

Further details on the algorithmic implementation and on the consistent linearization of the 
model can be found in [5] ad [6]. 

3. NUMERICAL RESULTS 
The interface model which has briefly been described in Section 2 has been implemented in the 

finite-element code LUSAS [7] as a new constitutive law for 2D interface elements and some 
numerical results for the benchmark problem of concrete dams analysis proposed by the ICOLD in 
[8] are briefly reported in this section. 

The geometry of the concrete dam is described in figure 3.a, and a non-proportional loading 
process is assumed. The initial loads are given by the sum of the specific weight of the concrete, γc 
= 24000 N m-3, and of the hydrostatic pressure, qw (y) = 1000 · 9.81 · (80 - y) N m-2. The additional 
load consists of an overpressure, constant along y, equal to a reference value qo = 1.0 MPa 
multiplied by a loading factor α. Hence, the external water pressure is given by: q (y) = qw (y) + α 
qo . 
Concrete behaviour is assumed to be linearly elastic, with Young modulus E = 24 GPa and 
Poisson ratio ν = 0.15, and the hypothesis of small deformations is made. 

A predefined ‘week’  concrete-soil interface has been considered at the base of the dam, while 
no concrete joint-interfaces resulting by the typical step-wise construction process have been 
modelled, for the sake of simplicity. The influence of the uplift water pressure within the open 
crack, which is also neglected in the analysis presented here, is investigated in [5].  

The interface properties have been chosen in accordance with [2], as follows: 

Gc1 = 90 J m-2    σo = 0.3 MPa   Gc2 = 350 J m-2     τo = 0.7 MPa     µ = tan 30° 

while the parameter η of formula (16) is set equal to 0.9. 
The finite-element mesh depicted in figure 3.b is created with a view to having a sufficiently 

refined discretization in the vicinity of the concrete-soil interface, and a coarser mesh away from 
it.  

For the concrete bulk material, 434 4-node and 50 3-node plane-strain interface elements with 
enhanced modes [7] are used, while 64 4-node interface elements are placed on the concrete-soil 
interface. 

An incremental, quasi-static analysis is conducted. In the first increment, the dead load and the 
hydrostatic water pressure are assigned with their entire value, with the load multiplier α set to 
zero. Then, starting from the second increment, α is increased following an automatic 
incrementation procedure [7]. 

In figure 4 the crack-sliding-displacement (CSD) (the horizontal displacement component ux of 
point P in figure 3.a) and the crack-opening-displacement (COD) (the vertical displacement 
component uy of point P in figure 3.a) are plotted against the load multiplier α.  
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Figure 3: (a) geometry and loading of the dam; (b) finite-element mesh. 

 
 
Both curves begin with a steep, increasing and almost linear branch, which does not exactly 

start from the origin of the axes because of the initial elastic deformation of the interface for α = 0 
due to the dead load and the hydrostatic water pressure. 

It can be observed that the CSD monotonically increases with α, with a decreasing slope of the 
curve, until the maximum value α = 0.492 is reached for a value ux of about 0.8 mm. This point 
represents a limit point in the equilibrium path, which is followed by a softening, unstable part of 
the load-displacement curve, until the value α = 0.423 is attained. At this point the crack has 
reached the end of the concrete-soil interface and the whole dam slides at a constant value of the 
applied overpressure. In this part of the process the interface adhesion is completely lost and the 
interface tangential tractions are only due to friction. 

The corresponding COD-α curve for α = 0 is characterised by an increasing part until the 
maximum value of α is attained, at which a snap back occurs. The COD then decreases back to a 
value of about 1.8 mm, which represents the constant COD value during the final sliding phase. 

4. CONLUSIONS 
A novel approach to the inclusion of friction effects in a cohesive-zone model has been proposed. 
Based on the additive decomposition of a representative area of the interface into a damaged and 
an undamaged part, a unilateral, friction contact model has been adopted on the latter part, while 
the evolution of the damage is governed by a mixed-mode interface relationship which specialises 
to piecewise linear laws for pure mode cases. 
Numerical results have been presented for a quasi-static, incremental simulation of a benchmark 
problem of dams analysis, concerning a concrete dam subjected to gravity load, hydrostatic 
pressure, and an additional overpressure depending on a load factor. They show the ability of the 
model of well capturing the increase in the mode-II interface strength due to friction. 
Further research will involve a sensitivity analysis to some of the material parameters of the 
model, like the friction coefficient and the initial interface stiffness. 
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Figure 4: COD-α and CSD-α curves. 
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