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ABSTRACT 

The transient nature of elastodynamic crack growth in graded materials under plane stress and 
plane strain is considered. Crack tip stress, strain and displacement fields for a transient crack 
propagating along the direction of property gradation in functionally graded materials (FGMs) are 
obtained through an asymptotic analysis coupled with displacement potential approach. The 
influence of transient nature of crack tip on contours of constant maximum shear stress is 
discussed. 
 

1. INTRODUCTION 

The elastic stress, strain and displacement fields for a crack propagating at a nonuniform speed 
along the direction of property variation in an FGM are developed. The elastodynamic problem is 
formulated in terms of displacement potentials through an asymptotic analysis for opening mode. 
The properties are assumed to vary exponentially along the direction of crack propagation. In this 
context, transient crack growth is understood to include processes in which both the crack tip 
speed and dynamic stress intensity factor are differentiable functions of time. 
A functionally graded material (FGM) is a composite consisting, of two or more phases, which is 
fabricated such that its composition varies in a defined spatial direction. The design is intended to 
take advantage of certain desirable features of each of the constituent phases. Extensive efforts 
have been made to characterize the crack tip stress field in FGMs under quasi-static loading. 
Erdogan [1] has shown that for a general nonhomogeneous material the quasi-static crack-tip 
stress field exhibits classical inverse square root singularity if the spatial variation of elastic 
properties is continuous. In contrast with the relatively extensive literature on the quasi-static 
behavior of cracks in FGMs, only a few investigations study the dynamic fracture of FGMs [2,3]. 
In most of the studies previously performed on propagating cracks in FGMs, the crack tip speed 
was assumed to be constant. The transient solution for elastodynamic crack growth in FGMs 
provides a strong foundation for the interpretation of experimental measurement in dynamic 
fracture testing of these materials. The transient stress fields developed in this paper are used to 
generate the contours of constant maximum shear stress (isochromatics) and the effect of transient 
crack growth on these contours is discussed. 

2. THEORETICAL FORMULATION 
Consider an FGM with exponentially varying elastic modulus and constant density, occupying the 
X-Y two-dimensional space. Let us assume that the FGM contains a crack with faces parallel to the 
X-Z plane, propagating at a non-uniform velocity c(t) in the positive X direction.  
The elastic constants µ and λ and the density ρ are assumed to vary in an exponential manner 
given by Eq. (1), whereas the Poisson's ratio ν is assumed to be constant. 
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µ0  and ρ0 are the shear modulus and mass density at X=0 and α is a constant having dimension 
(Length)-1. 
Within the framework of plane elasticity the equations of motion for any elastodynamic problem 
can be written as 
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where σij are the in-plane stress components and u, v are in-plane displacements. 
Stress can be expressed in terms of displacements using Hooke’s law as  
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where λ0 is Lame’s constant at crack tip. 
In plane displacements, u and v, can be expressed in terms of displacement potentials (Φ and Ψ) as  
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Substituting Eq. (4) into Eq. (3) and substituting the resulting equation into Eq. (2), the equation of 
motion can be expressed in terms of displacement potentials Φ and Ψ as 
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where 00 µλ=k  
After some mathematical manipulations it can be shown that Eq. (5) can be only satisfied when 
addressed as 
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For transient crack tip analysis, Eq. (6) can be written in the crack-tip moving coordinate reference 
(x, y) using the transformations given below.  
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Using the transformed crack-tip coordinates, Eq. (7) can be rewritten as  
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It should be noticed here that by setting the nonhomogeneity parameter (α) equal to zero these 
equations reduce to the corresponding equations of motion for homogeneous materials. However, 
due to the nonhomogeneous nature of the material, these equations (8) lose their classical form and 
remain coupled in the two fields Φ and Ψ , through the nonhomogeneity parameter α. 
To derive an asymptotic expansion for the stress components near the crack tip a standard method 
is employed in which the region around the crack tip is expanded so to fill the entire field of 
observation. To this end, rescaled coordinates η1=x/ε, η2=y/ε, 0<ε<1 are introduced. As ε→ 0, all 
points in the x-y plane except those near the crack tip are mapped beyond range of observation in 
the η1, η2  plane. 
Assuming Φ and Ψ can be expressed in powers of ε as 
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The first term of series (m=0) corresponds to the expected square root singular contribution 
proportional to r -1/2 in the asymptotic near-tip stress field. 
Substituting the assumed asymptotic form (9) in to governing equation (8) and using the scaled 
coordinates an infinite series involving differential equations associated with each power of ε is 
obtained. For the resulting equation to be valid the differential equations corresponding to each 
power of ε (ε3/2, ε2, ε5/2...) should vanish independently. By setting each power of ε equal to zero 
will lead to a set of coupled partial differential equations in φ and ψ. In particular for any value of 
m, these governing equations will have a general from as 
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For m = 0 and 1 (Eq. (10)) remains uncoupled and exactly similar to that for a homogeneous 
material having elastic properties same as that of the elastic properties of the FGM at the crack tip. 
Indeed, as will be seen, φ0 and ψ0, have the same spatial structure in both transient and steady state 
cases. This is not so, however, for φm , ψm if m > 1. 
The governing equations (10) for m = 0 and 1 can be easily reduced to Laplace's equations in the 
respective complex domains ,21 ηαης ll i+=  121 , −=+= ii ss ηαης .  
For opening mode, the crack face boundary conditions can be given as 
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Using theses boundary conditions the solution to the partial differential equation (10) 
corresponding to m = 0 and 1, can be given as 
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It should be emphasized here that ll θρ ,( ) and  are translating polar coordinates distorted 
from conventional polar coordinates by an amount determined by the crack speed c. As crack 
speed is now a function of time, coordinates (ρ

),( ss θρ

l,θl) and  are now dependent on time. Using 
the definition of the time dependent dynamic stress intensity factor, 
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the crack face boundary condition, σxy = 0 on Y = 0, the coefficients A0 and B0 can be determined 
as 
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For m = 2 governing equation (10) reduces to  
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Solution to the governing equation (14) can be given as 
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2.1  Stress, Strain and Displacement Fields 
 
The stress, strain displacement fields around the crack tip can now be obtained using displacement 
potentials (  and Ψ ) found in the previous sections. Φ
The in-plane displacements (u, v) can be obtained by substituting ( Φ  and Ψ ) in Eq. (4). Once in 
– plane displacements are obtained; In-plane strains can be obtained using Eq. (16)  
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By substituting Eq. (3) in to Eq. (2), in-plane stress component can be written in terms of 
displacement potentials Φ and Ψ as, 
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where ν43 −=p  for plane strain and 
ν
ν

+
−

=
1
3p  for plane stress. 

Individual expressions for stress, strain and displacements are not provided here due to limitation 
of space.  
 

3.  DISCUSSION OF SOLUTIONS 
To get an insight into the effects of transient terms on dynamic fracture process, contours of 
constant maximum shear stress (isochromatics) are generated for opening mode loading 
conditions. The contours are generated for an assumed value of the dynamic stress intensity factor 
(coefficient A0), whereas the higher order coefficients A1, A2, B1 and B2 are assumed to be zero. 
However the nonhomogeneity and transient specific parts of the higher order term r1/2, which has 
A0 and B0 as the coefficients, is retained. The typical values of material properties and material 
thickness used in generating contours are as follows: Poisson’s ratio = 0.3, shear modulus at the 
crack tip µc = 1 GPa, density at the crack tip ρc = 2000 kg/m3, thickness t = 0.01m, 
nonhomogeneity parameter α = 0.50 m-1.  
Figure 1 shows the effect of rate of change of mode-I stress intensity factor (dKID(t) /dt) on 
contours of constant maximum shear stress for opening mode loading around the crack-tip 
corresponding to KID  =  1.0 MPa-m1/2, c = 650 ms-1. The crack is assumed to be moving with a 
uniform velocity i.e. dc/dt = 0. The value of dKID(t) /dt was varied over six orders of magnitude 
for generating the contours. The crack occupies negative x-axis and the crack tip is located at (0, 
0). It can be observed from the figure that as the dKID(t) /dt increases, the size and number of the 
fringes around the crack tip increases.  As can be seen in figure 1(a) for dKID(t) /dt = 0 the fringes 
have negligible tilt. High velocity has the tendency to cause a backward tilt in fringes but this is 
compensated by the gradient in Young’s modulus, which is increasing in the direction of crack 
propagation. As the rate of change of dynamic stress intensity factor increases the fringes start 
tilting backward (Figure 1(b and c)). The significant changes in pattern of these contours around 
the crack-tip suggest that the transient terms can have a major influence on the crack-tip field.  
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