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ABSTRACT

The transient nature of elastodynamic crack growth in graded materials under plane stress and
plane strain is considered. Crack tip stress, strain and displacement fields for a transient crack
propagating along the direction of property gradation in functionally graded materials (FGMs) are
obtained through an asymptotic analysis coupled with displacement potential approach. The
influence of transient nature of crack tip on contours of constant maximum shear stress is
discussed.

1. INTRODUCTION

The elastic stress, strain and displacement fields for a crack propagating at a nonuniform speed
along the direction of property variation in an FGM are developed. The elastodynamic problem is
formulated in terms of displacement potentials through an asymptotic analysis for opening mode.
The properties are assumed to vary exponentially along the direction of crack propagation. In this
context, transient crack growth is understood to include processes in which both the crack tip
speed and dynamic stress intensity factor are differentiable functions of time.
A functionally graded material (FGM) is a composite consisting, of two or more phases, which is
fabricated such that its composition varies in a defined spatial direction. The design is intended to
take advantage of certain desirable features of each of the constituent phases. Extensive efforts
have been made to characterize the crack tip stress field in FGMs under quasi-static loading.
Erdogan [1] has shown that for a general nonhomogeneous material the quasi-static crack-tip
stress field exhibits classical inverse square root singularity if the spatial variation of elastic
properties is continuous. In contrast with the relatively extensive literature on the quasi-static
behavior of cracks in FGMs, only a few investigations study the dynamic fracture of FGMs [2,3].
In most of the studies previously performed on propagating cracks in FGMs, the crack tip speed
was assumed to be constant. The transient solution for elastodynamic crack growth in FGMs
provides a strong foundation for the interpretation of experimental measurement in dynamic
fracture testing of these materials. The transient stress fields developed in this paper are used to
generate the contours of constant maximum shear stress (isochromatics) and the effect of transient
crack growth on these contours is discussed.

2. THEORETICAL FORMULATION
Consider an FGM with exponentially varying elastic modulus and constant density, occupying the
X-Y two-dimensional space. Let us assume that the FGM contains a crack with faces parallel to the
X-Z plane, propagating at a non-uniform velocity ¢(?) in the positive X direction.
The elastic constants y and A and the density p are assumed to vary in an exponential manner
given by Eq. (1), whereas the Poisson's ratio v is assumed to be constant.

H = pgexp(eX), p = p,exp(aX). ()



Mo and p, are the shear modulus and mass density at X=0 and « is a constant having dimension
(Length)™.

Within the framework of plane elasticity the equations of motion for any elastodynamic problem
can be written as
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where ojj are the in-plane stress components and u, v are in-plane displacements.
Stress can be expressed in terms of displacements using Hooke’s law as
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where A is Lame’s constant at crack tip.
In plane displacements, u# and v, can be expressed in terms of displacement potentials (@ and ¥) as
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Substituting Eq. (4) into Eq. (3) and substituting the resulting equation into Eq. (2), the equation of
motion can be expressed in terms of displacement potentials @ and ¥ as
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where k = A,/ 1,

After some mathematical manipulations it can be shown that Eq. (5) can be only satisfied when
addressed as
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For transient crack tip analysis, Eq. (6) can be written in the crack-tip moving coordinate reference
(x, y) using the transformations given below.
x=Xct,y=7Y
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Using the transformed crack-tip coordinates, Eq. (7) can be rewritten as
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It should be noticed here that by setting the nonhomogeneity parameter (o) equal to zero these
equations reduce to the corresponding equations of motion for homogeneous materials. However,
due to the nonhomogeneous nature of the material, these equations (8) lose their classical form and
remain coupled in the two fields @ and ¥, through the nonhomogeneity parameter o.

To derive an asymptotic expansion for the stress components near the crack tip a standard method
is employed in which the region around the crack tip is expanded so to fill the entire field of
observation. To this end, rescaled coordinates 7,=x/g, n,/~y/¢, 0<&<1 are introduced. As e— 0, all
points in the x-y plane except those near the crack tip are mapped beyond range of observation in
the 7, 7, plane.

Assuming @ and ¥ can be expressed in powers of ¢ as
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The first term of series (m=0) corresponds to the expected square root singular contribution
proportional to "% in the asymptotic near-tip stress field.

Substituting the assumed asymptotic form (9) in to governing equation (8) and using the scaled
coordinates an infinite series involving differential equations associated with each power of ¢ is
obtained. For the resulting equation to be valid the differential equations corresponding to each
power of € (672, &%, €2...) should vanish independently. By setting each power of ¢equal to zero
will lead to a set of coupled partial differential equations in ¢ and . In particular for any value of
m, these governing equations will have a general from as
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For m = 0 and 1 (Eq. (10)) remains uncoupled and exactly similar to that for a homogeneous
material having elastic properties same as that of the elastic properties of the FGM at the crack tip.
Indeed, as will be seen, ¢ and y, have the same spatial structure in both transient and steady state
cases. This is not so, however, for ¢,, w,, if m > 1.

The governing equations (10) for m = 0 and 1 can be easily reduced to Laplace's equations in the
respective complex domains ¢, =n, +iq,n,, ¢, =n, +ian,, i =1.

For opening mode, the crack face boundary conditions can be given as



Oy =04 =0 for (x<0,Y=0) and o,, =0 for(Y =0) (11)
Using theses boundary conditions the solution to the partial differential equation (10)
corresponding to m = 0 and 1, can be given as
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It should be emphasized here that (p,,6,) and (p,,0,) are translating polar coordinates distorted
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from conventional polar coordinates by an amount determined by the crack speed c. As crack

speed is now a function of time, coordinates (p;,6) and (p,,6,) are now dependent on time. Using

the definition of the time dependent dynamic stress intensity factor, K NOE %i;gq gwazﬂy ~and
-0

the crack face boundary condition, oy, = 0 on Y = 0, the coefficients 4, and B, can be determined
as
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For m =2 governing equation (10) reduces to
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2.1 Stress, Strain and Displacement Fields

The stress, strain displacement fields around the crack tip can now be obtained using displacement
potentials (® and W ) found in the previous sections.
The in-plane displacements (u, v) can be obtained by substituting (® and ¥ ) in Eq. (4). Once in

— plane displacements are obtained; In-plane strains can be obtained using Eq. (16)
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By substituting Eq. (3) in to Eq. (2), in-plane stress component can be written in terms of
displacement potentials @ and ¥ as,
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where p =3 -4y for plane strain and p = for plane stress.
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Individual expressions for stress, strain and displacements are not provided here due to limitation
of space.

3. DISCUSSION OF SOLUTIONS

To get an insight into the effects of transient terms on dynamic fracture process, contours of
constant maximum shear stress (isochromatics) are generated for opening mode loading
conditions. The contours are generated for an assumed value of the dynamic stress intensity factor
(coefficient A,), whereas the higher order coefficients 4;, 4,, B; and B, are assumed to be zero.
However the nonhomogeneity and transient specific parts of the higher order term r'?, which has
Ay and By as the coefficients, is retained. The typical values of material properties and material
thickness used in generating contours are as follows: Poisson’s ratio = 0.3, shear modulus at the
crack tip g4 = 1 GPa, density at the crack tip p. = 2000 kg/m’, thickness ¢ = 0.01m,
nonhomogeneity parameter o= 0.50 m™.

Figure 1 shows the effect of rate of change of mode-I stress intensity factor (dKjp(t) /dt) on
contours of constant maximum shear stress for opening mode loading around the crack-tip
corresponding to K;p = 1.0 MPa-m"?, ¢ = 650 ms™'. The crack is assumed to be moving with a
uniform velocity i.e. dc/dt = 0. The value of dK;p(?) /dt was varied over six orders of magnitude
for generating the contours. The crack occupies negative x-axis and the crack tip is located at (0,
0). It can be observed from the figure that as the dK;p(?) /dt increases, the size and number of the
fringes around the crack tip increases. As can be seen in figure 1(a) for dK;p(?) /dt = 0 the fringes
have negligible tilt. High velocity has the tendency to cause a backward tilt in fringes but this is
compensated by the gradient in Young’s modulus, which is increasing in the direction of crack
propagation. As the rate of change of dynamic stress intensity factor increases the fringes start
tilting backward (Figure 1(b and c)). The significant changes in pattern of these contours around
the crack-tip suggest that the transient terms can have a major influence on the crack-tip field.
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Figure 1: Effect of rate of change of mode-I stress intensity factor on contours of constant
maximum shear stress around the crack-tip
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Figure 2 shows the effect of crack tip acceleration (dc/dr) on the contours of constant maximum
shear stress. The value of dc/dt was varied over eight orders of magnitude. Changes in fringe size
and shape up to crack tip accelerations of 10° ms™ are negligible (figure 2a). Further increase in
acceleration results in decrease in size of fringes around the crack tip (figures 2 b and c). It can

also be observed that the fringes begin to tilt forward as the crack tip acceleration increases.
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Figure 2: Effect of crack-tip acceleration on contours of constant maximum shear stress
around the crack-tip for opening mode loading in an FGM

4. CLOSURE

Crack tip stress, strain and displacement fields for a transient crack propagating along the direction
of property gradation were obtained through an asymptotic analysis coupled with displacement
potential formulation. These stress fields are used to generate the synthetic contours of constant
maximum shear stress. It was shown that transient effects causes significant spatial variation in
these contours. Therefore, in studying dynamic fracture of FGMs, it is appropriate to include the
higher order transient terms in the crack tip fields for the situations of sudden variation of stress
intensity factor or crack tip velocity.
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