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ABSTRACT 

The material body considered in this work consists of multiphases, such as composite material, 
polycrystalline solid, and concrete, etc. Digital imaging data are taken as the input to specify the 
configuration and composition of the specimen. In this work, meshless method, which constructs the 
approximation of field variables entirely in terms of nodes without the need of a highly structured 
mesh as required in finite element method, is demonstrated as a superior numerical tool to analyze 
crack propagation in multiphase material. Crack propagation can be viewed as a process of moving 
discontinuities. Meshless analysis of crack propagation does not involve the formidable task of 
constantly remeshing the cracking specimen. In this work material forces and Eshelby stresses, due to 
the existence of material inhomogeneity, are calculated and can be employed as the indicator for the 
location of crack initiation. A fracture criterion, based on the ratio of the opening stress over the 
material toughness distributed in front of the crack tip, is proposed to determine the direction of crack 
propagation of mixed mode fracture problem in multiphase material. Numerical results, including 
deformation, stresses, path of crack propagation, failure process and the ultimate strength of the 
multiphase material, are presented and discussed.  
 

1 MULTIPHASE MATERIALS 
The material body considered in this work consists of multiphases. For example, concrete 
consists of aggregates, pastes, and voids. The boundaries between phases are usually 
irregular and random. Therefore, to say the least, it is very difficult to model and to perform 
numerical simulation of the detailed feature of multiphase material.  On the other hand, 
digital imaging data from CT, ultrasound, MRI, etc. are abounding. 
 
CT, also known as CAT scanning or X-ray computed topography, is a completely 
nondestructive technique that enables one to visualize detailed features in the interior of 
opaque solid objects and to obtain information on their 3-D geometry and composition. In 
CT, cross sectional images are generated by projecting a thin beams of X-ray through one 
plane of an object from many different angles. A 2-D image of a section or a slice of a 3-D 
object usually has 512 512×  pixels. The value of each pixel is a measure of the reduction 
in X-ray intensity and energy, which in turn is a measure of the density of the material at that 
point. Therefore, the values at the pixels can be taken as the input to specify the 



configuration and composition of the specimen. 
 
 

2 MESHLESS METHODS  
Meshless methods can be constructed solely in terms of nodes without the need of a highly 
structured mesh as required in finite element (FE) method. For a variety of problems with 
large deformation, moving boundary discontinuities, or in optimization problems where 
re-meshing may be required, meshless methods are very attractive [1-3]. The meshless 
methods are based on the moving least squares technique in which the approximation of any 
scalar-valued function, ( )U x , can be expressed as an inner product between a vector of 
shape functions, ( )Φ x , and a vector of nodal values, U , as 
 

( ) ( )U = ⋅x Φ x U    ,                                                 (1) 
 

which has the same form as in the FE method. However, there is a characteristic difference 
between FE method and meshless method: eq. (1) is an approximation rather than an 
interpolation, i.e., in meshless method, ( )i iU U≠x . This character requires special and 
careful treatments of essential boundary conditions, mirror symmetries, and moving 
discontinuities, such as crack propagation [3,4]. 
 

3 MATERIAL FORCES 
The gravitational forces, the Lorentz force on a charged particle, and a radiation force that 
causes damping are all physical forces in the usual Newtonian view of mechanics. They are 
the contributors to Newton’s equation of motion (balance of linear momentum) or 
Euler-Cauchy equations of motion when we pass from discrete model to continuum field 
theory. Physical forces are generated by displacements in physical space. For a continuous 
body, this means a change in its actual position in its physical configuration at time t  [5]. 
 
On the other hand, the concept of material forces was first introduced by Eshelby [6], 
elaborated and further developed by Maugin [5,7]. Material forces are generated by 
displacement, not in physical space, but on material manifold. For example, they can be 
generated by (a) an infinitesimal rigid displacement of a finite region surrounding a point of 
singularity in an elastic body [6], (b) an infinitesimal displacement of a dislocation line [8], 
(c) an infinitesimal increase in the length of a crack [9-10]. This characteristic property of 
material forces also leads to their christening as inhomogeneity forces. Material 
inhomogeneity is defined as the dependence of properties (not the solution), such as density, 
elastic coefficients, viscosity, plasticity threshold, on the material point. These 
inhomogeneities may be more or less continuous such as in metallurgically superficially 
treated specimens or in a polycrystal observed at a mesoscopic scale, or it may change 
abruptly such as in laminated composite or in a body with foreign inclusions or cavities. 
 



For thermoelastic material, the governing equations of material forces may be expressed as 

,KL K L LB F P+ =       ,                                                   (2) 

where the pseudomomentum P , Eshelby stress B , and material force F are derived to be 
[5, 11]: 

,
o

L k k LP v xρ≡ −          ,                                               (3) 

( )KL KL KM LMB K W T Cδ= − − −           ,                                (4) 
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It is seen that the material force in thermoelastic solid is due to  (1) body force f , (2) 

temperature gradient T∇ , and (3) the material inhomogeneities in density oρ  and all the 

thermoelastic coefficients ,  ,  and γ a A . In eqs. (3-5) , , , , , oK W Tv C E  are the velocity, 

Green deformation tensor, Lagrangian Strain, kinetic energy, strain energy, reference 
temperature, respectively. It should be emphasized that it is almost impossible and even 
erroneous to calculate the derivatives of the material properties through FE method, and, on 
the other hand, it is natural and easy to do so through meshless method. 
 
Also, for 2-D problems in the presence of propagating crack, the material force associated 
with the crack tip is obtained as 
 

0
( )lim d

Γ→ Γ

= ⋅ ⊗ − Γ∫F N V P B    ,                                 (6) 

 
where Γ denotes the cross-sectional circuit around the crack tip; N  is the unit vector 
normal to Γ pointing away from the crack tip; V is the velocity of crack propagation. 
Notice that crack propagation is a movement on material manifold, not in physical space, 
therefore, V is not equal to the material time rate of change of the position vector (velocity) 
of any particle. It can be shown that, in a very special case, the projection of F in the 
direction tangent to the crack path behind the crack tip is reduced to the J -integral, which is 
path-independent if the material within Γ is homogeneous. 



 
4 CRACK PROPAGATION 

In two dimensional fracture problems, Mode I fracture may lead to self-similar crack 
extension due to symmetry. In general case, especially in case of multiphase material, we 
encounter mixed mode fracture problems. Therefore, to determine the direction of crack 
extension is an unavoidable task. Usually, we use the maximum opening stress criterion or 
the maximum energy release rate criterion to determine the direction of crack propagation. 
For example, using maximum opening stress criterion, the current crack tip will extends to 
{ ,  cr θ } if the opening stress tθθ is maximum at  { ,  cr θ }, where 0cr >  is small and 

finite constant. One may consider that ( , )ct rθθ θ  is the driving force distributed along an 

arc with a radius cr  with respect to the current crack tip. If the material is homogeneous, the 
maximum opening stress criterion is reasonable, i.e., the information of driving force is 
enough to determine the direction of crack extension. However, if the material is 
inhomogeneous, one has to consider the resistance, i.e., the toughness, distributed in front of 
crack tip. In this work, we propose that the current crack tip will extend to { ,  cr θ } if the 
ratio 
 

( , )( , )
( , )

c
c

c c

t rR r
t r
θθ θθ

θ
≡     ,                                                   (7) 

 
reaches a maximum at { ,  cr θ }, where ct is the toughness associated with the opening 
stress. Crack propagation process can be viewed as a changing of crack tip with a moving 
barrier following the advancing of the crack tip. It is noticed that meshless analysis of crack 
propagation does not involve the formidable task of constantly remeshing the cracking 
specimen. It only needs the updating of the barrier and the sprinkle of additional nodes in 
front of the current crack tip to enhance the solution accuracy. 
 

5 NUMERICAL RESULTS 
In this work material forces and Eshelby stresses, due to the existence of material 
inhomogeneity, are calculated and can be employed as the indicator for the location of crack 
initiation. The fracture criterion, based on the ratio of the opening stress over the material 
toughness distributed in front of the crack tip, is proposed to determine the direction of crack 
propagation of mixed mode fracture problem in multiphase material. Numerical results, 
including deformation, stresses, path of crack propagation, failure process and the ultimate 
strength of the multiphase material, are presented and discussed.  
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