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Abstract  
Crack propagation in real (quasi)brittle materials demonstrates various signs of stochasticity; a tortuous 
character of fracture surfaces, multiple cracking and crack branching observed in experiments are a vivid 
confirmation of it. Traditional approaches of fracture mechanics represent cracks as geometrically smooth 
objects with straight (or curved) crack fronts, thus usually neglecting morphology of real cracks. An 
introduction of a direct account for stochastic features of brittle materials can lead to a more adequate 
description of real fracture processes. Combining these random features with continuum damage mechanics 
(CDM) and fracture mechanics, it is possible to study the effect of the material’s randomness on crack 
propagation. CDM describes a macroscopic manifestation of various failure processes developing at lower 
length scales. The mode-I fracture analysis, based on discretization of the cross-section of specimens 
containing a sharp notch into rectangular elements (cells), provides detailed information on crack 
propagation. A necessity to describe a crack with its length changing along its front presupposes a transition 
from a unique stress-intensity factor to a set of its local values. A computational procedure for simulation of 
crack-damage interaction and crack propagation in alumina specimens at tension is suggested on the basis of 
a modification of a lattice scheme unified with ideas of CDM and local stress-intensity factors. 
Inhomogeneity of material properties is modelled in terms of various random spatial distributions of the 
initial damage in the specimen’s cross-section. A description of complicated morphology of cracks is 
implemented by means of scaling analysis of the crack-front shape. It is shown that the scaling parameters 
can be linked to the type of material’s randomness.  

 
1  INTRODUCTION 

Real (quasi)brittle materials usually exhibit – to a different extent – a spatial randomness in their 
properties. The most common reason for such randomness is non-uniformity in spatial 
distributions either of material’s constituents or of various defects. A macroscopic manifestation of 
the effect of such randomness on the fracture process is the vivid difference in a crack trajectory 
and/or in a fragmentation type (number and shape of fragments) of identical specimens of the same 
material under similar loading conditions. Another sign of it is a well-known scatter in mechanical 
parameters at the moment of fracture observed for twin specimens of brittle materials. Microscopic 
variations in distributions of phases or defects result in different scenarios of generation and 
evolution of failure and should be adequately reflected in modelling schemes for fracture of 
random media. 

In ceramic materials, one of the main microstructural features is the presence of initial 
porosity (see [1] and references there) caused mainly by manufacturing (e.g. sintering). The 
random spatial distribution of porosity is responsible for fluctuations in the local stiffness 
magnitude of ceramics, causing non-uniform stress distributions even under uniform loading 
conditions. At the same time, pores are nuclei for generation of cracks, the evolution of which is 
the main mechanism of failure development in ceramics [2]. One of the standard approaches to 
describe the effect of porosity is to introduce effective elastic coefficients as functions of its level, 
obtained either experimentally or theoretically [1-4]. 

The present paper exploits another approach based on a direct introduction of material’s 
randomness using various statistical realisations of the spatial distribution of properties for a single 



specimen. It is the basis for quantitative estimates of various parameters (including scaling ones) 
for a given combination of a specimen’s shape, material properties and loading conditions.  
 

2  MODEL 
A model for the description of failure evolution in alumina ceramics accounting for their 
microstructural inhomogeneity was introduced in [5, 6] and applied to the crack propagation 
process in [7]. It is based on a well-posed CDM approach to failure in brittle materials that has 
been suggested and discussed in detail in [8]. The proposed approach describes the macroscopic 
effect of microscopic processes in brittle materials in terms of an additional variable – damage 
parameter D. This parameter characterises the material’s deterioration under the applied load due 
to damage accumulation. The initial damage 0D  is linked to the manufacturing-induced porosity 
level, randomly distributed in the material. The spatial randomness of material’s properties is 
directly introduced into the suggested model in terms of the scatter in 0D  mapped onto a set of 
cells (elements), into which the area under study is discretized. 

The damage evolution law for brittle-elastic materials loaded at tension can be obtained by 
thermodynamic analysis [8]. Its form for a 2d net of elements that are characterized by a pair of 
indices ( )ji,  can be presented in the following form: 
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where ijij DD 0  and  are current and initial levels of damage in the element ( )ji, , ij ε  is a local 
strain, E is a Young’s modulus of the bulk material and W* denotes its continuum damage energy 
absorption capacity. The latter is a temperature-dependent material property linked to the process 
energy of damage evolution. The magnitude of this parameter was obtained from the treatment of 
the experimental data on dynamic failure of alumina at various temperatures in the interval from 
20ºC to 1500ºC, for details see [9]. 

Three various types of randomness in the initial damage level are considered here: with a 
uniform probability density function and two normal distributions characterised by various 
magnitudes of the standard deviation γ  (Fig. 1). It is worth mentioning that for all types both the 

distributions’ intervals [ ]max0min0 , DD  for ijD0  as well as its mean are the same. The mapping of 
this interval onto the unit interval [ ]1 ,0  for parameter s of the probability density functions is 

performed using the following relation: ( ) ( )min0max0min00 DDDDs ij −−↔ . 
Such introduction of randomness into the modelling scheme results in a non-uniform 

distribution of stresses over elements even under uniform external loading and in a scatter in the 
instantaneous levels of damage ijD  for the entire set of elements.  

Let us consider a traditional case of the initially notched specimen subjected to the mode-I 
fracture conditions. Consider a rod with a sharp notch, which rectangular cross-section ABCD 
with dimensions ba ×  containing the notch tip EF is discretized into a two-dimensional 
orthogonal network of yx NNM ×=  rectangular elements (Fig. 2). Dimensions of these elements 
meet the requirements for a representative element being, on the one hand, considerably larger 
than the characteristic length scale of the microstructure (in our case, the element size is 100 µm 
against the grain size of several micrometers) and, on the other hand, they are small enough to 
describe macroscopic variations in stress/strain fields. A pair of indices ( )ji,  denotes here the 
element situated in the ith column and the jth row of elements, with columns being perpendicular 



 
Figure 1:  Probability density functions for three 

studied cases of randomness (numbers stands 
for respective standard deviations) 

Figure 2: Discretization of the 
specimen’s cross-section, 
containing the notch’s tip 

 
to the notch tip and rows parallel to the x-axis (Fig. 2). 

The character of the stress distribution over elements under conditions of remote strain for the 
mode-I crack can be described in the following form: 

( ) ijijijij DEK   1 εσ −= .    (2) 

Equation (2) accounts for the main factors of the case modelled: stress concentration due to 
the presence of the crack is introduced in terms of stress coefficients ijK  and the effect of damage 
is treated in a traditional CDM way, i.e. material’s deterioration is described by the multiplier 
( )ijD−1 . Stress coefficients ijK  can be obtained by integrating the well-known relation of linear 

fracture mechanics yKzz  2I πσ = . Integration should be implemented independently for all 

columns of elements (the reason for this is given below). As a result, stress coefficients can be 
presented as 

( )iiy
iij njnjlKK −−−+= 1 I π ,      (3) 

where iKI  is a local stress intensity factor (SIF) of the ith column of elements, yy Nbl = , in  is a 
number of elements occupied by the crack in the ith column. Stress intensity factors for the given 
geometry and loading conditions can be approximated by respective relations from handbooks of 
SIF (e.g. [10]): 
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where yii Nnn = . 
Equations (2)-(4) describe stress redistribution processes in elements due to damage and to the 

presence of a notch. With an increase in external deformation, the growth pace for stresses in 
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different elements of the cross-section could vary considerably, especially in the vicinity of the 
notch tip, resulting in large differences in local stress magnitudes. When the stress level ij σ  of 

element ( )ji,  attains its critical value ij 
mσ  (local strength) linked to the respective damage 

threshold ijDm , this element fails. This is a local failure criterion for an element: after reaching the 

state characterized by ijij Dm
 
m  and σ  the element’s load-bearing capacity vanishes and the 

accumulated elastic energy ( ) ( )EW ijij 2
2 

mσσ =  is released. The released energy of this locally 
failed element is equally distributed to its nearest neighbours causing their transitions to a new 
state. Details of the algorithm to calculate parameters of this state are given in [6, 7]. A transition 
of an element to its new state results in increased damage level. If this level fulfils the local failure 
criterion ijij DD m=  for the element, a secondary failure process is initiated; even cascades of local 
failures of elements can occur. 

The process of failure of elements adjoining the tip of a crack/notch is a mechanism of crack 
propagation. Since local failures of elements occur non-simultaneously, various portions along the 
crack front ‘grow’ with different rates. It results in a scatter of parameter in  in Eq. (3) along the 
crack front (

iin const= at the initial moment before deformation) and, consequently, in a 

fluctuating level of stress intensity factors, necessitating the introduction of local SIFs. 
 

3  RESULTS AND DISCUSSION 
The suggested algorithm is used to simulate the damage evolution in specimens of alumina 
ceramics, loaded by uniform external displacements. The manufacturing-induced porosity is 
considered to result in the initial average damage of 0.055, with the upper and lower bounds of its 
distribution being 0.1 and 0.01, respectively. The typical calculated load-deformation curve for ? 
specimen with ? uniform probability density of the initial damage is given in Fig. 3. The strain-
controlled loading process ensures stability of ca1culations for the post-critica1 behaviour (after  

Figure 3: Load-strain curve in case of 
uniform probability density 

Figure 4: Position of crack front for various 
deformations: (1) initial position, up 
to 0.0811%; (2) 0.0825%; (3) 
0.083%; (4) 0.0841% ( 05.0=γ ) 
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initiation of the crack growth), which is represented by the ascending part of the curve. This part is 
calculated using several hundreds strain increments, each being 5×10-8. 

The initial randomness in material’s properties affect the crack growth process that is linked to 
non-simultaneous local failure events. The difference in the type of randomness is reflected in 
specific features of crack propagation in respective specimens. The increase in the distribution’s 
variance results in a larger scatter in the local crack length, with some parts of the crack front 
considerably outstripping other from the very early stages of the crack growth process. In contrast, 
these stages in a specimen with 05.0=γ  demonstrate a more ordered (though still random) 
development: loca1 failures occur in the direct vicinity of the notch tip, and at some moment of 
deformation the entire row is occupied by the propagated crack, and only after this the first failure 
occurs in the next row (see curve 2, Fig. 4). 

Each statistical realisation of the spatial distribution of initial damage results in the unique 
scenario of crack propagation and, consequently, morphology of the crack front. A scaling 
parameter characterising tortuosity of crack fronts can be obtained within the framework of the in-
plane roughness analysis [11, 12], based on the general scheme for characterization of self-affine 
profiles [13]. The roughness index (also known as the Hurst exponent) ζ  is determined from the 

scaling relation ζry ∝max , where  
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Here ( )rymax  is a distance along the y-axis between the farthest – with respect to the initial notch – 
locally failed element, belonging to a propagating crack, and the closest one within the given 
window of size r along the crack front. The level of ζ  obtained from microscopic observations 
was found to be equal 0.60±0.04 for 8090 Al-Li alloy and 0.54±0.03 for a Supera2 Ti3Al-based 
alloy on the length scale from 1 µm to 1.5 mm; the detailed analysis of universality of ζ  is given 
in [11]. The roughness of fracture surfaces (out-of-plane roughness) measured, for instance, by 
mechanical profilometry is a material-sensitive parameter: for sandstone the roughness exponent 
ζ  was found to be close to 0.5 (0.47±0.03) and for basalt it was higher (0.80±0.04) for scale 
length from 25 mm up to several cm [14].  
 
Table 1: Roughness exponents and fractal dimension of crack fronts  

Strain, % 0.082 0.0835 0.0839 

ζ  0.75±0.06 0.70±0.04 0.61±0.06 0.05 

D -- 0.85±0.02 0.81±0.02 

Strain, % 0.082 0.083 0.0837 

ζ  0.75±0.03 0.60±0.04 0.55±0.07 0.10 

D -- 0.78±0.04 0.55±0.02 

Strain, % 0.082 0.0825 0.083 

ζ  0.58±0.03 0.57±0.03 0.52±0.05 

Standard 
deviation/ Type 
of Randomness 

Uniform 
probability 

density 
D -- 0.68±0.04 0.59±0.05 



Results of numerical simulations based on the introduced description of spatially random 
brittle alumina with microscopic porosity show the effect of the extent of non-uniformity in 
material properties on the in-plane roughness (Table 1). There are two obvious trends: (1) crack 
propagation is characterised by the decreasing roughness exponent; (2) the decrease in the 
magnitude of the standard deviation causes the increase in ζ . The case of the uniform probability 
has the lowest levels of the roughness exponent. The same trends are obvious for the fractal 
dimension of crack fronts, calculated with the use of the box-counting method (see Table 1). 
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