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ABSTRACT 

In this paper, we performed the numerical simulations by the proposed simplified model to explain the 
decrease in threshold stress intensity factor (SIF) range ∆Kth due to high maximum SIF Kmax. The results with 
tentative material resistances showed the validity of the proposed model, at least in the meaning that the 
decrease in ∆Kth by the increase with Kmax was simulated. 

 
1  INTRODUCTION 

Since the pioneering work of Paris and Erdogan [1], the applied stress intensity factor (SIF) range 
∆K has been known to be a major controlling parameter in fatigue crack growth (FCG) rate da/dN 
under small scale yielding conditions. At low FCG rates, da/dN-∆K curve in log-log scale 
generally becomes steep and appears to approach a vertical asymptote that corresponds to the FCG 
threshold. ∆K corresponding to this asymptote is named as the threshold SIF range ∆Kth. Almost 
without exception, existing data show that the ∆Kth tends to decrease with increasing load ratio R 
[2]. Schmidt and Paris rationalized this behavior solely on the basis of the crack closure concept 
[3]. According to their model, we expect that the ∆Kth obtained by the Kmax-constant test method 
(that ensures closure free conditions) is independent of Kmax, and that it is constant. However, the 
decrease in ∆Kth due to high Kmax is reported for some materials tested with Kmax-constant methods 
[2]. To explain this decrease in ∆Kth due to high Kmax, in this paper, we numerically modeled our 
qualitative model and ran numerical simulations to show the validity of our model. 
 

2 SIMULATIONS 
 
2.1 FCG algorism 
 
From the observation of SEM fractographs and the assumptions we have made, we consider that 
the FCG mechanism is the same regardless of ∆K, based on the standpoint that microscopic cracks 
grow locally (such as in crystal grain) due to a cyclic or static mode fracture and the macroscopic 
crack front growth is observed as coalescences of microscopic cracks. In this case, the microscopic 
crack growth in any direction will contribute to macroscopic crack growth, because the crystal 
grain is separated [4]. Fig. 1 is a simplified model showing this mechanism, applied to FCG in an 
ASTM CT specimen. 
 
 



In Fig. 1, each square (hereafter called as a 
cell) corresponds to a grain. We specify the 
location of a cell, for example, as i th row and j 
th column ( i = 1 ~ nrow, j = 1 ~ ncolumn). In our 
model, we assume that the microscopic crack 
growth mechanism is selectively determined as 
cyclic or static mode failure, depending on the 
direction of the slip plane of the grain. Here we 
specify material resistances for cyclic and static 
mode failure as ∆kSij and kCij, respectively. Another simplification is that the microscopic crack 
growth direction coincides with the macroscopic FCG direction. The depth of j th column is aj and 
crack front is generally uneven as shown in Fig.1. The nominal load in the simulation is controlled 
so that the maximum SIF is equal to the specified Kmax and so that the SIF range ∆K - average 
crack length a = (a1+ ancolumn)/2 relationship for CT specimen 

∆K = ∆K0exp(C (a - a0)) (1) 
holds, same as that for standard ASTM FCG tests [5]. Here ∆K0 is ∆K corresponding to the initial 
crack length a0 and C is the ∆K-gradient, respectively.  

Because of the uneven crack front with local 
length aj, the local crack driving force in the j th 
column is distributed so that the maximum SIF and 
SIF range becomes kj, ∆kj, respectively. Then these 
crack driving forces in the j th column are 
compared with the material resistances of the crack 
tip cells. Criteria we apply in our simulation is that 
there is a local crack growth in the case of ∆kj > 
∆kSij or kj > kCij, and on the other hand no local 
crack growth if ∆kj < ∆kSij and kj < kCij. When ∆kj < 
∆kSij and kj < kCij is satisfied for all columns, we 
finish the simulation and the nominal SIF range ∆K 
at this time is named as ∆Kth. The concrete 
algorism of the FCG simulation is shown as a flow 
chart in Fig. 2. In the following, detailed 
procedures of the simulation are explained step by 
step, referring to Fig. 2. 
 
2.1.1 Initial Setting 
First, we specify CT specimen dimensions (B: 
thickness, W: width, a0: initial crack length, aEND: 
crack length for forced termination), quantities for 
specifying the size of a cell and its location (g:  
size of one cell in FCG direction, nrow, ncolumn), 
quantities relevant to material properties (E: 
Young’s modulus, ν: Poisson’s ratio, CParis, m: 
material constants of Paris law, KC, ∆KS: basic material resistances for static and cyclic mode 
failure, respectively, α, β: the parameters to specify the scatter in material resistance of each cell, 
RI: uniform random number seed). 

Then the material resistances of each cell are randomly distributed by the following formula 

Figure 1: Our simplified mesoscopic 
crack coalescence FCG model [4] 
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Figure 2: Flow chart of FCG algorithm 
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using the uniform random numbers ψij1, ψij2 of 0 ~ 1 generated with RI. 
kCij = (α + β ψij1)KC ≡ Ψij1KC  (2) 
∆kSij = (α + β ψij2)∆KS ≡ Ψij2∆KS  (3) 

 
2.1.2 Local Crack Driving Force Calculation 
As we described in section 2.1, the nominal load in the simulation is controlled so that the 
maximum SIF is equal to the specified Kmax and so that the SIF range ∆K - average crack length a 
= (a1+ ancolumn)/2 relationship for CT specimen satisfies eqn (1). The nominal maximum load Fmax 
and the load range ∆F corresponding to the nominal these crack driving forces can be counted 
backward from the SIF formula for the ASTM’s standard CT specimen [5]. 
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Then, in order to calculate the 
local crack driving force kj and ∆kj in 
the crack tip of j th column, the load 
distribution coefficient φj is calculated 
by modeling the CT specimen with 
ncolumn slices of width b = B/ncolumn, 
crack length aj and compliance λj as 
shown in Fig. 3. Since the slice model 
can be considered as a parallel spring, 
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Here we used ASTM’s following equation [5] for evaluation of λj (ξ = aj/W), 
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Since the maximum load and the load range of the local load of the slice of j th column is 
φjFmax and φj∆F, respectively, kj and ∆kj can be calculated by the eqn (4) as follows. 

kj = K(φjFmax, b, ξ = aj/W) (7) 
∆kj = K(φj∆F, b, ξ = aj/W) (8) 

 
2.1.3 FCG Calculation 
Once the local crack driving force of j th column is obtained, crack growth is evaluated for each 
column. First, row index i of the crack tip cell is evaluated using the material resistances for this 
cell. Then occurrence of local crack growth is judged by comparing the local crack driving force 
∆kj, kj with the material resistances of this cell ∆kSij, kCij for all columns. Naturally, in this 
evaluation, we cannot evaluate the local crack growths by cyclic and static modes at the same time. 
If we simulate the load cycle faithfully, an idea to evaluate the crack growth by static mode and 
then that by cyclic mode might be considered better. However, it is reported that damage due to 
static mode failure does not necessarily occur in case slip occurs early in a load cycle [6]. Thus, we 
chose to first evaluate the occurrence of the cyclic mode failure and, in case of no cyclic mode 
failure, then evaluate the occurrence of static mode failure. We evaluated the amount of local crack 
growth in a certain cycle as follows: 
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Figure 3: Slice model for stress redistribution 



(1) In case of ∆kj > ∆kSij, the amount of local crack growth in the j th column is evaluated as 
CParis(∆kj)m according to the Paris law. 

(2) In case of kj > kCij, the amount of local crack growth is assumed to be g, the size of a cell. 
(Note: There is a possibility that crack growth due to static failure mode is smaller than g, as a 
result that kj > kCij becomes not satisfied due to load redistribution. However, change in load 
distribution factor φj due to local crack growth calculated by eqn (4) was small, so we simply 
evaluated the amount of growth as g). 

 
2.1.4 Crack Arrest Evaluation 
Finally, crack arrest evaluation is performed after local crack growth evaluation is performed for 
all columns. 
(1) In case ∆kj < ∆kSij and kj < kCij are satisfied for all columns, we define that the crack has 

arrested. The nominal SIF range ∆K at this time is the ∆Kth that we wanted to obtain. 
(2) In case a > aEND is satisfied as a result of FCG, we define that there was no ∆Kth. 

If these conditions are not satisfied, local crack driving force calculation is again performed 
for the next cycle. 
 
2.2 Preliminary calculation conditions and results 
 
We carried out the simulation corresponding to our Kmax-constant test for JIS carbon steel S55C by 
CT specimen whose size is B = 12.5, W = 50, and a0 = 18 mm. 

The size of a cell was set to g = 0.03 mm because the grain size was approximately that size. 
From this g and B, we set ncolumn = 400. Considering that the total amount of crack growth in a test 
was about 5 mm, we set nrow = 168. Crack length for simulation termination was set as aEND = 21 
mm. As material constants, E = 206 GPa, ν = 0.3, and CParis = 1.35 x 10-9, m = 3.77 obtained from 
tests [4] were used. The average value SIF for which the CT specimens experienced forced 
fracture was used as the basic material resistance KC. On the other hand, ∆KS was set as 3 MPam1/2 
because test results of ∆Kth for low Kmax was that value. Parameters to specify the scatter in 
material resistance of a cell was tentatively set as α = 0.5 and β = 1.0 (namely, ψij1 and ψij2 = 0.5 ~ 
1.5). 

Constants in eqn (1) for load control was set 
as ∆K0 = 12 MPam1/2 and C = -0.7 mm-1, that were 
used for our tests [4]. 

Here we tentatively specified the basic 
material resistances as aforementioned, though 
there are various possible combinations. Thus we 
first considered the influence of KC/∆KS on da/dN 
and ∆Kth, under condition of identical scatter in 
material resistances (ψij1 and ψij2 for RI = 81). The 
results showed that KC/∆KS had no effect on da/dN 
– ∆K curve nor ∆Kth, when Kmax/KC was set to a 
same value. Thus, the effect of Kmax on da/dN – ∆K 
curve and ∆Kth was considered with constant 
KC/∆KS hereafter. 

The results are shown in Fig. 4 and 5. In Fig. 
4, FCG rate da/dN was evaluated by the 
incremental polynomial method given in ASTM 
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E647 [5]. The ∆K corresponding to a plot 
for da/dN = 10-8 mm/cycle is the nominal 
∆K when the conditions of ∆kj < ∆kSij and 
kj < kCij, were satisfied. This ∆K is called 
∆Kth in this simulation. 

We see from Fig. 4 that the 
da/dN-∆K curves coincides for three 
Kmax/KCs in the range of 10-6 ~ 10-5 
mm/cycle. On the other hand, we see the 
decrease in ∆Kth due to high Kmax in the 
range below da/dN = 10-6 mm/cycle. Thus 
we conclude that we can simulate the 
decrease in ∆Kth due to high Kmax by our 
model [4], that was originally proposed to 
qualitatively explain the phenomenon 
observed for some materials under 
Kmax-constant ∆Kth tests. 

Fig. 5 is the fractured surfaces at the simulation end, corresponding to Fig. 4. The light gray, 
intermediate gray and black colored cell represent the no-fractured, cyclic-mode and static mode 
fractured cell, respectively. Digits with the scale on the right hand of the figure shows the crack 
length. We see in the cases of Kmax/KC = 1.0 that static mode fractured cells have appeared for a > 
19.5 mm. On the other hand, in the case of Kmax/KC = 0.5, we see from Fig. 5 that the crack growth 
by the static mode failure has not occurred. 
 
2.3 Detailed examination of the decrease in ∆Kth due to high Kmax 
 
Since phenomenon of the decrease in ∆Kth was observed when Kmax was increased as Kmax/KC = 
0.5, 0.8 and 1.0 in the aforementioned, we increased the numbers of simulations to examine this 
phenomenon in detail. We made simulations for six Kmax/KC in the range of 0.5 ~ 1.0, graduated in 
0.1 increments. For each Kmax/KC, 1352 material resistance distribution was considered by varying 
the uniform random number seed RI. For all cases, scatter in material resistance of a cell was 
tentatively set as α = 0.5 and β = 1.0 (ψij1, ψij2 = 0.5 ~ 1.5), identical with the aforementioned. The 
results are summarized as Fig. 6. 

In Fig. 6, a closed circle with bars on 
upper and lower side represents the average 
µ ± standard deviation σ of ∆Kth/∆KS 
obtained from 1352 material resistance 
distributions. Maximum and the minimum 
values of ∆Kth/∆KS are also shown in the 
figure for reference. We first see from the 
figure that the decrease in ∆Kth due to high 
Kmax appears generally from the simulation 
and that the results in Fig. 4 were not special 
ones. Another finding is that the average 
value of ∆Kth/∆KS seems to decrease linearly 
due to the increase in Kmax/KC. This linear 
relationship has been reported for carbon 

Figure 6: Relation of Kmax/KC and ∆Kth/∆KS 
(α = 0.5, β = 1.0, Ψij1,Ψij2 = 0.5 ~ 1.5) 
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steel S55C [4] and for Ti and Al alloys [2]. 
In this meaning, though we used tentative values and made many assumptions, we conclude 

that our simplified FCG model [4] can simulate the decrease in ∆Kth due to high Kmax. 
 

3 DISCUSSION 
As aforementioned in section 2.1, the local crack tip damage evaluation procedure was to first 
evaluate the occurrence of the cyclic mode failure, and in case of no cyclic mode failure, then 
evaluate the occurrence of static mode failure. As a result, the damage mechanism of a fractured 
cell is limited to the cyclic mode failure in the range of ∆K/∆KS > 1.4 (about 1.5, a < 19.5 mm), 
because a cell satisfying ∆kj < ∆kSij does not appear when scatter in the material resistance is set as 
ψij1, ψij2 = 0.5 ~ 1.5. On the contrary, the evidence of a static mode failure has been found in the 
corresponding region of the actual specimen, although the number was few [4]. In the present 
simulation, we paid attention to FCG near the ∆Kth, and assumed that the static mode failure was 
an additional damage as a first trial. We admit that improvement is still necessary on selective 
damage algorithm. 

In Fig. 6, we see that the average value of ∆Kth/∆KS at a specific Kmax/KC was in the range of 
1.2 ~ 1.3 when Kmax/KC = 0.5 ~1.0. Though not shown in the figure, ∆Kth/∆KS was approximately 
1.3 for Kmax/KC < 0.5. In addition, the minimum ∆Kth/∆KS for Kmax/KC ≤ 0.5 was larger than unity. 
One might have expected the single value of unity instead for this Kmax/KC. At this moment, we do 
not have a definite answer to explain the discrepancy between the simulation result and the 
expected value. However, we know from some additional simulations with smaller scatter in the 
material resistance that this average ∆Kth/∆KS decreases from 1.3. We are still continuing 
investigation for this subject. 

In our simulation, scatter in material resistances were tentatively set as Ψij1, Ψij2 = 0.5 ~ 1.5. 
Our test results for the S55C show that ψij1 (variation of KC) is 0.95 ~ 1.03 to average value, and 
ψij2 (variation in ∆Kth to a specific Kmax) is 0.93 ~ 1.07 to average value [4]. In this meaning, the 
scatter in material resistances we used might be considered to be overestimating. However, to 
apply KC or ∆Kth as material constants itself is an assumption. Thus, basic material resistances 
coupled with an appropriate scatter has to be discussed further to refine the model.  
 

4 CONCLUSION 
In this paper, we performed the numerical simulations by the proposed simplified model to explain 
the decrease in threshold stress intensity factor (SIF) range ∆Kth due to high maximum SIF Kmax. 
The results with tentative material resistances showed the validity of the proposed model, at least 
in the meaning that the decrease in ∆Kth by the increase with Kmax was simulated. 
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