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ABSTRACT

Experimental results concerning mixed-mode crack growth in PMMA specimens are presented, together with numerical
simulations of the whole fracture process. The mixed-mode tests were conducted on single edge notched specimens
subject to three point bending loading conditions. The mode-mixity of the fracture loading was obtained by means of
a notch offset with respect to the mid-span cross section. A generalized finite element approach was adopted for the
numerical simulations, coupled with a local description ofthe fracture process based on a mixed-mode cohesive law.

1 INTRODUCTION
Mixed-mode fracture is an important issue in many engineering applications, and the number of the pub-
lished research on the subject has been steadily growing in the most recent years [1, 2, 3, 4, 5]. In many
practical situations, even components having relatively simple geometry and loading conditions (like films,
composite plates and adhesive joints) may undergo mixed-mode fracture due to different combinations of
service loadings and hygrothermal stresses. Under these conditions, crack initiation will be associated to
different critical strain energy release rates at varying the mode-mixity ratio. As far as damage-tolerant
design is concerned, the need for quantitative prediction of the remaining lifetime of a component also
requires the crack propagation stage to be analysed. This may take place along a very complex crack path
depending on material microstructure, loading conditionsand component geometry, usually undergoing a
transition from shear to opening fracture mode for most practical situations.
In the present paper, the mixed-mode fracture behaviour of arubber-modified polymetyl methacrylate was
characterised using asymmetric three point bending testing geometry. The fracture behaviour was simulated
using a generalized finite element approach coupled with a local description of the fracture process using a
specially formulated mixed-mode cohesive law, and the results were compared in order to get some insights
about the transition from stable to unstable crack propagation.

2 MIXED-MODE THREE POINT BENDING TESTS ON PMMA
The material used in this study was a rubber toughened polymethyl methacrylate (PMMA) with 22 wt% of
acrylic rubber, supplied in form of extruded sheets with nominal thicknessB = 8 mm. The glassy matrix
has weight and number average molecular weights of 134000 and 68000, respectively. The glass transition
temperature of the matrix is 105◦C, while that of the rubbery phase is -30◦C.
A three point bending (TPB) test configuration was considered, using single edge notched specimens. The
geometry of the specimens is shown in Fig. 1. The specimens has widthW twice the thicknessB and the
spanS is four timesW .
Notching was performed in two stages. In the first one a notch was made with a 0.015 mm radius blade
moving alternatively into the specimen. In the second one, the same blade was pushed into the previously
prepared notch after cooling the material to -40◦C so as to propagate a short brittle crack: the blade works
as a wedge and causes the formation of a natural crack ahead ofthe machined notch. The highly stressed
zone that developed ahead of the notch tip during the machining operation was removed by annealing the
specimens at 90◦C for 5 h and then cooling it to 23◦C at a rate of 1◦C/min [6]. Two different initial notch
depthsa0 were considered, corresponding toa0/W ratios of 0.3 and 0.6. In order to ensure mixed-mode
crack loadings, the notches were performed at a varying distanced from the mid-span cross section of the
specimens: three different offset ratiosχ ≡ 2d/S of 0.25, 0.50 and 0.75 were used.
Fracture testing was conducted at 23◦C and at constant crosshead displacement ratedu/dt = 5 mm/min
with an Instron 1185 dynamometer. A 10 kN load cell was used tomeasure the loadP .
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Figure 1: mixed-mode TPB test. Test set-up, geometry and notation.

3 NUMERICAL SIMULATIONS
The extended finite element method for quasi-brittle fracture proposed in [7, 8] was here adopted for the
numerical simulation of the mixed-mode TPB tests discussedin Section 2.
Let us consider a two-dimensional bodyΩ with boundaryΓ = Γt ∪ Γu: tractions are prescribed onΓt and
displacements onΓu. LetΓd be a propagating discontinuity locus insideΩ; alongΓd a cohesive interaction
between the two flanks exists in the process zone (PZ).
The equilibrium conditions forΩ are:

C
T
σ + b̄ = 0 in Ω\Γd; (1)

Nσ = t̄ onΓt; (2)

Mσ = −t
+ onΓ+

d , Mσ = t
− onΓ−

d . (3)

Here:σ is the stress vector;̄b andt̄ are the prescribed external loads per unit volume and surface, respec-
tively; C is the differential compatibility operator;N andM are matrices containing the components of
the unit outward normaln to Γ and of the unit normalm to Γd. Γ+

d andΓ−
d respectively define the two

flanks ofΓd acted upon by the traction vectorst
+ andt

−. The equilibrium acrossΓd thus reads:

t ≡ t
− = −t

+. (4)

The linearized compatibility conditions inΩ\Γd and alongΓu are given by:

ε = Cu in Ω\Γd; (5)

u = ū onΓu, (6)

ε andu being the strain and the displacement vectors, respectively, andū the assigned displacements along
Γu. The displacement discontinuity[u] acrossΓd can be expressed as:

[u] = u
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Figure 2: mixed-mode effective cohesive law.

As far as the constitutive law is concerned, the bulk material in Ω\Γd is assumed to behave elastically, i.e.:

σ = DΩε in Ω\Γd, (8)

DΩ being the bulk stiffness matrix.
A cohesive model is adopted for the PZ. Following [9], an effective displacement discontinuity[u] is

defined according to:
[u] =

√

[u]2n + β2[u]2s, (9)

where:[u]n and[u]s are, respectively, the opening and sliding components of the displacement discontinuity
vector[u]; β2 is a coupling coefficient that represents the ratio between mode II and mode I fracture energies
[10, 11]. The effective cohesive law is then defined as in Fig.2, with a linear softening envelope and
an effective fracture energyGc = tM [u]U/2. Loading/unloading conditions in the softening branch are
formulated according to a damage law, such that unloading tothe origin of thet − [u] plane (see Fig. 2) is
guaranteed (details can be found in [7]).
At fixed Γd, the weak form of the governing relations, account taken of the constitutive laws for the bulk
material and for the cohesive PZ, reads:

find u ∈ U :

∫

Ω\Γd

ε
T (v)DΩε̇ (u̇) dΩ +

∫

Γd

[v]TR
T
DΓR[u̇] dΓd =

∫

Ω\Γd

v
T ˙̄
b dΩ +

∫

Γt

v
T ˙̄t dΓt ∀v ∈ U0,

(10)

where: a superposed dot stands for rates;U is the space of admissible displacementsu in Ω, i.e. such that
u = ū on Γu, u possibly discontinuous onΓd; v ∈ U0 (with zero prescribed displacements onΓu) is the
test function;DΓ is the cohesive tangent stiffness matrix;R is the orthogonal global-local mapping along
Γd.
To simulate cohesive crack growth in the frame of the extended finite element method, the displacement
field is assumed [7, 8]:

u
h (x) =

∑

i∈I

φi (x)u
0
i +

∑

j∈J

H (x)φj (x)u
E
j , (11)

where: the setI collects all the nodes, whose overlapping supports completely coverΩ, whileJ gathers only
those nodes whose supports are even partially cut byΓd; u

0
i are the customary nodal degrees of freedom

andu
E
j are the additional ones;φi is the piece-wise linear nodal shape function;H (x) is the generalized

Heaviside step-function:

H (x) =

{

+1 if (x − x
∗)

T
m > 0

−1 if (x − x
∗)

T
m < 0

(12)
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Figure 3: mixed-mode TPB test. Comparison between experimental (continuous lines) and numerical (filled
symbols) load-displacement plots: (a)a0/W = 0.3; (b) a0/W = 0.6.

x
∗ being the closest point projection of the generic pointx ∈ Ω ontoΓd (see also [8]). This discretization

gives rise to a piece-wise linear continuous displacement field inΩ\Γd and a piece-wise linear displacement
discontinuity alongΓd, provided that theΓd tip is always located at the edge of an element.
To propagateΓd, the stress state ahead of the current crack tip is recoveredin a patch of elements whose
integration points are located inside a circle centered at theΓd tip and with a radius of up tonr times the
characteristic mesh size (in the forthcoming examplesnr = 8 was used). A fourth-order complete polyno-
mial function is best-fitted to the recovered stress field and, on its basis, crack growth direction is assumed
perpendicular to the maximum in-plane principal stressσp at the crack tip. According to this criterion, the
crack starts propagating as soon asσp exceeds the tensile strengthtM ; at fixed loading conditions, the crack
then grows until the conditionσp < tM is satisfied.

4 RESULTS
To assess the capability of the proposed extended finite element method to simulate mixed-mode crack
growth, results for the TPB tests of Section 2 are presented.
The PZ cohesive law was calibrated by matching the experimental and numerical load vs displacement
plots in the casea0/W = 0.3 andχ = 0.25, obtaining: tM = 50 MPa, Gc = 2.5 N/mm. The elastic
properties of the bulk were assumed: Young’s modulusE = 1900 MPa, Poisson’s ratioν = 0.39. These
parameter values guarantee a good agreement between experimental data and numerical outcomes, both in
the hardening and in the softening regimes.
As for the load vs displacement relation, it emerges that only for a0/W = 0.6 andχ = 0.50 the numerical
response is significantly more brittle than the experimental one, and characterized by the sudden drop of
the plot atu ∼= 1.4 mm. In all the other cases, the eventual steep softening branch is correctly captured and
linked to a sudden, unstable propagation of the crack after an initial stable phase.
As far as the failure mode is concerned, in Figs. 4 and 5 the final crack paths are reported fora0/W = 0.3
and0.6, respectively. It can be seen that propagation of the crack within the elements allows to obtain
results completely independent of the background mesh.
As already noted in [7], by increasing the offset ratioχ, for anya0/W , the test is characterized by: an
increased initial stiffness (slope of theP − u curve) in the hardening regime; a transition from a whole
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Figure 5: mixed-mode TPB test. Simulated crack paths fora0/W = 0.6: (a) χ = 0.75; (b) χ = 0.50; (c)
χ = 0.25.
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