MIXED-MODE CRACK GROWTH IN TOUGHENED PMMA
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ABSTRACT
Experimental results concerning mixed-mode crack growBPNIMA specimens are presented, together with numerical
simulations of the whole fracture process. The mixed-medéstwere conducted on single edge notched specimens
subject to three point bending loading conditions. The raodety of the fracture loading was obtained by means of
a notch offset with respect to the mid-span cross sectionerferglized finite element approach was adopted for the
numerical simulations, coupled with a local descriptiothef fracture process based on a mixed-mode cohesive law.

1 INTRODUCTION

Mixed-mode fracture is an important issue in many engimegapplications, and the number of the pub-
lished research on the subject has been steadily growirteimbst recent years [1, 2, 3, 4, 5]. In many
practical situations, even components having relativielpte geometry and loading conditions (like films,
composite plates and adhesive joints) may undergo mixederfracture due to different combinations of
service loadings and hygrothermal stresses. Under thesbtioms, crack initiation will be associated to
different critical strain energy release rates at varyimg mode-mixity ratio. As far as damage-tolerant
design is concerned, the need for quantitative predictioin® remaining lifetime of a component also
requires the crack propagation stage to be analysed. Thitaka place along a very complex crack path
depending on material microstructure, loading conditiand component geometry, usually undergoing a
transition from shear to opening fracture mode for mostfraksituations.

In the present paper, the mixed-mode fracture behaviourabber-modified polymetyl methacrylate was
characterised using asymmetric three point bending tpgtiometry. The fracture behaviour was simulated
using a generalized finite element approach coupled witlea thescription of the fracture process using a
specially formulated mixed-mode cohesive law, and thelteawere compared in order to get some insights
about the transition from stable to unstable crack propaigat

2 MIXED-MODE THREE POINT BENDING TESTS ON PMMA

The material used in this study was a rubber toughened pahyimethacrylate (PMMA) with 22 wt% of
acrylic rubber, supplied in form of extruded sheets with mahthicknessB = 8 mm. The glassy matrix
has weight and number average molecular weights of 1340068000, respectively. The glass transition
temperature of the matrix is 10%, while that of the rubbery phase is -30.

A three point bending (TPB) test configuration was considieusing single edge notched specimens. The
geometry of the specimens is shown in Fig. 1. The specimenwitdh 17 twice the thicknes® and the
spans is four timesiv.

Notching was performed in two stages. In the first one a notaf made with a 0.015 mm radius blade
moving alternatively into the specimen. In the second dmesame blade was pushed into the previously
prepared notch after cooling the material to 24Dso as to propagate a short brittle crack: the blade works
as a wedge and causes the formation of a natural crack ahé¢lagl wiachined notch. The highly stressed
zone that developed ahead of the notch tip during the madhimperation was removed by annealing the
specimens at 90C for 5 h and then cooling it to 23C at a rate of £C/min [6]. Two different initial notch
depthsag were considered, correspondingdgy/ W ratios of 0.3 and 0.6. In order to ensure mixed-mode
crack loadings, the notches were performed at a varyingmtist/ from the mid-span cross section of the
specimens: three different offset ratips= 2d/.S of 0.25, 0.50 and 0.75 were used.

Fracture testing was conducted atZ3 and at constant crosshead displacementdatet = 5 mm/min
with an Instron 1185 dynamometer. A 10 kN load cell was usedéasure the loag.
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Figure 1: mixed-mode TPB test. Test set-up, geometry aratioat

3 NUMERICAL SIMULATIONS

The extended finite element method for quasi-brittle frecroposed in [7, 8] was here adopted for the
numerical simulation of the mixed-mode TPB tests discugs&gction 2.

Let us consider a two-dimensional bo@ywith boundant® = I'; U T',,: tractions are prescribed dah and
displacements ohi,,. LetT'; be a propagating discontinuity locus insidealongl'; a cohesive interaction
between the two flanks exists in the process zone (PZ).

The equilibrium conditions fof? are:

Clo+b=0 inO\Ty; 1)
No =t onTy; 2
Mo = —t* onl'} , Mo =t~ onl;. (3)

Here: o is the stress vectod; andt are the prescribed external loads per unit volume and syrfaspec-
tively; C is the differential compatibility operatof¥V and M are matrices containing the components of
the unit outward normak to I' and of the unit normain to I'y. T’} andl"; respectively define the two
flanks ofl"; acted upon by the traction vectars andt~. The equilibrium acrosE, thus reads:

t=t =—t". 4)
The linearized compatibility conditions R\I'; and alond",, are given by:

e=Cu in Q\I'y; %)

u=1u onl,, (6)

€ andwu being the strain and the displacement vectors, respegtardia the assigned displacements along
I',,. The displacement discontinuity] acrosd"; can be expressed as:
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Figure 2: mixed-mode effective cohesive law.

As far as the constitutive law is concerned, the bulk materi®\I',; is assumed to behave elastically, i.e.:
o = Dqe in NIy, (8)

Dq, being the bulk stiffness matrix.
A cohesive model is adopted for the PZ. Following [9], an etffe displacement discontinuity:] is

defined according to:
[u] = V/[ul + B?[ul?, 9)

where:[u],, and[u], are, respectively, the opening and sliding componentsadigplacement discontinuity
vector[u]; 3? is a coupling coefficient that represents the ratio betweedenl and mode | fracture energies
[10, 11]. The effective cohesive law is then defined as in Rg.with a linear softening envelope and
an effective fracture energy. = ¢ [u]Y /2. Loading/unloading conditions in the softening branch are
formulated according to a damage law, such that unloaditiget@rigin of thet — [u] plane (see Fig. 2) is
guaranteed (details can be found in [7]).

At fixed Ty, the weak form of the governing relations, account takermefdonstitutive laws for the bulk
material and for the cohesive PZ, reads:

findu € U : / e' (v) Dqé (i) dQ + / [v]"R"DrR[4]dl'y = / v'bdQ + / v'tdl, Yo € Uy,
O\T'y4 Ty O\T'y4 Iy

(10)

where: a superposed dot stands for ratess the space of admissible displacemennis (2, i.e. such that

u = uw onT',, u possibly discontinuous ohiy; v € Uy (with zero prescribed displacementsoy) is the
test function;Dr is the cohesive tangent stiffness mattR;is the orthogonal global-local mapping along
Ty

To simulate cohesive crack growth in the frame of the extdrfagte element method, the displacement

field is assumed [7, 8]:
u' (@) =) di(@)ul +) H(z)¢, ()u], (11)
el jedJ

where: the sef collects all the nodes, whose overlapping supports comglebver?, while J gathers only
those nodes whose supports are even partially cithw! are the customary nodal degrees of freedom
andu? are the additional onesj; is the piece-wise linear nodal shape functidh(zx) is the generalized

Heaviside step-function:
+1 if(@—x*) ' m>0
= 12
() { —1 if(x—ax) m<0 (12)
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Figure 3: mixed-mode TPB test. Comparison between expatah@ontinuous lines) and numerical (filled
symbols) load-displacement plots: (&)W = 0.3; (b) ag/W = 0.6.

x* being the closest point projection of the generic pairg €2 ontol'; (see also [8]). This discretization
gives rise to a piece-wise linear continuous displacemelatifi 2\I"; and a piece-wise linear displacement
discontinuity alond4, provided that thé'; tip is always located at the edge of an element.

To propagatd’y, the stress state ahead of the current crack tip is recove@egatch of elements whose
integration points are located inside a circle centeretial'f; tip and with a radius of up ta,. times the
characteristic mesh size (in the forthcoming examples- 8 was used). A fourth-order complete polyno-
mial function is best-fitted to the recovered stress field andts basis, crack growth direction is assumed
perpendicular to the maximum in-plane principal stressit the crack tip. According to this criterion, the
crack starts propagating as soogexceeds the tensile strengtt; at fixed loading conditions, the crack
then grows until the condition, < ¢ is satisfied.

4 RESULTS

To assess the capability of the proposed extended finiteesiemethod to simulate mixed-mode crack
growth, results for the TPB tests of Section 2 are presented.

The PZ cohesive law was calibrated by matching the expetahand numerical load vs displacement
plots in the cas@,/W = 0.3 andy = 0.25, obtaining:t = 50 MPa, G, = 2.5 N/mm. The elastic
properties of the bulk were assumed: Young's modius: 1900 MPa, Poisson’s ratio = 0.39. These
parameter values guarantee a good agreement betweemesptaii data and numerical outcomes, both in
the hardening and in the softening regimes.

As for the load vs displacement relation, it emerges that totlay /W = 0.6 andx = 0.50 the numerical
response is significantly more brittle than the experinleme, and characterized by the sudden drop of
the plot atu = 1.4 mm. In all the other cases, the eventual steep softeningbiiarcorrectly captured and
linked to a sudden, unstable propagation of the crack aftérital stable phase.

As far as the failure mode is concerned, in Figs. 4 and 5 thédiaak paths are reported fag /W = 0.3
and0.6, respectively. It can be seen that propagation of the crattirmthe elements allows to obtain
results completely independent of the background mesh.

As already noted in [7], by increasing the offset ratipfor any ao/W, the test is characterized by: an
increased initial stiffness (slope of the — « curve) in the hardening regime; a transition from a whole
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Figure 5: mixed-mode TPB test. Simulated crack pathsfgilV = 0.6: (a) x = 0.75; (b) x = 0.50; (c)
x = 0.25.
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