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ABSTRACT 

In this paper a general expression of the potential energy release rate G  for a three-dimensional 
fracture mechanics problem is supplied. Under the hypothesis of a quasi-static growth phenomenon, 
the distribution of the vector a, i.e. the velocity field of the fracture propagation, is assumed unknown 
along the crack front. This assumption leads to a general formula of G  for a three-dimensional 
hyperelastic body containing a plane crack. Moreover, imposing a stationary condition of G  with 
respect to a, the analytical problem of the crack front shape evaluation is formulated. A unique 
solution exists for the problem, which is described by a system of two non-linear equations. Practical 
applications of the theory can be obtained by the use of finite element analysis results, together with a 
numerical solution of the two equations in the unknown components of the fracture propagation 
velocity. 

 
1  INTRODUCTION 

Following the same procedure exposed in (Bennati [1]), a more general expression of G  
(the Potential Energy Release Rate) can be assessed for a three-dimensional hyperelastic 
solid. This expression contains as parameters both the local direction and the intensity of 
propagation, i.e. the local velocity of crack growth. If only the direction of propagation 
along the crack front is assumed as parameter, the expression of G, the potential energy 
release rate relevant to a unit thickness of the three-dimensional solid (obtained in a local 
reference frame), formally does not depend directly on the parameter itself. On the other 
hand assuming as parameter the vector a, the velocity field of the fracture propagation 
defined along the crack front line, a general expression of G  which directly depends on a 
and its gradient can be obtained. This expression allows us to impose a stationary condition 
of G  with respect to the vector a under the simplified hypothesis of a quasi-static 
propagation of the fracture. In this way a system of two non-linear equations has been 
defined and can be used to analyse the evolution of the shape of a three-dimensional plane 
crack propagating in a hyperelastic solid. 

 
2  THREE-DIMESIONAL FORMULATION OF G 

Considering a three-dimensional cracked body B, the quasi-statically propagating fracture 
can be represented by means of a regular surface, whose area af can be assumed as the time 
parameter. The crack surface is bounded by the regular curve γ(af); assuming a global 
reference frame as shown in Figure 1, the parametric equation of the curve is: 

 )a,(X f3ZX =  . (1) 



  
 Figure 1. Figure 2. 
 
For each value of the abscissa X3, the crack tip grows with velocity )a,X( f3a  in the 
direction of the unit vector eγ defined as: 
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In the following (Figure 1), Tδ indicates a tubular sub-region of B, whose intersection with 
the plane π (normal plane) at any point along the crack tip is a circle with centre on γ and 
radius δ (Figure 2) and B δ =B - Tδ. We can suppose eγ lying in the π plane; moreover, when 
we deal with a plane crack, it will coincide with the normal on γ. 

   
 Figure 3. Figure 4. 
 
As demonstrated in (Bennati [1], Rice [2]), the potential energy release rate, )a( fG , of the 
whole body B for a unit increment of cracked area af assumes the following expression: 
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where σ is the strain energy density, u the displacement vector field, T the Cauchy stress 
tensor and m is the unit vector normal to ∂Tδ (Figure 3). In the present case, using tensor 
algebra calculations (Gurtin [3]), the divergence of the integral function in the eqn (3) can 
be written as: 
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we obtain (I is the identity tensor): 
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Applying the divergence theorem to a volume VδΓ, whose boundaries are the regular 
surface SΓ, the crack faces Sf and the boundary ∂TδΓ with outward unit normal vectors n 
and m'=-m respectively (Figure 4), we have: 
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moreover, since in the present case 0u =∇−σ )TI ( div   
T  (Eshelby [4]), in view of (6) 
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Finally, in the case of a plane crack ( i.e. n • eγ = 0 on Sf ), we obtain: 
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being eγ not a constant vector field. Therefore, for each volume VΓ, 
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From eqn (10) we can obtain the expression of )a,X( f3G , which is the local value of the 
potential energy release rate along the crack front. In fact, if the control volume VΓ is a 
cylinder with height dl: 

=)a,X(   f dl3G  

∫∫∫ −σ−−σ−σ γ

+

γ

Γ

γ

AA'A

dS dldSds dl    3 )utn( e )utn(e+ )utn(e=       ki,ik ,kki,ik kki,ik k , (11) 

where a local reference frame has been assumed, with the x1-x3 plane parallel to the crack 
surface and the x1-x2 plane, which contains the base A, coinciding with the normal one. 



As stated before, the local direction of crack propagation γe  coincides with the normal to 
the crack front and the global abscissa 3X  locates the origin of the local reference frame. 
The third integral in the eqn (11) has been obtained averaging the function 
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and A’, using the Kronecker delta: 
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moreover, being 3in −≡  on A, k3k   n δσ−=σ  and 3ij iji TnT t  −=−= , then: 
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Being 0=e=e1=e  , 321 γγγ in the local reference frame, 
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The previous relation is well known in literature and it has been used in (Chiarelli [5]). 
This is the local energy release rate for a unit increment of the cracked area af, obtained 
under the assumption of a constant local rate of propagation along a known direction 
(normal to the crack front line). 

 
3  ANALYSIS OF THREE-DIMESIONAL CRACK FRONT SHAPE 

The aim of this section is the assessment of an analytical formulation of the three-
dimensional crack front shape for a quasi-static propagation in an hyperelastic media. 
Indicating with a  the vector field which describes the evolution of the crack front, i.e. the 
local velocity of propagation assumed in the present case unknown in direction and 
modulus, the expression (10) becomes: 
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Assuming a  as the vector field which maximises )(a fΓVG , under the hypothesis of a 
quasi-static propagation phenomenon, the following equation can be written (Gurtin [3]): 
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It can be demonstrated that there is a unique solution for the eqn (15). The eqn (16) can be 
seen as a linearized condition applied to the instantaneous shape of the crack front. 



From eqn (15), when VΓ has the A and A’ bases parallel to the global 21 XX −  plane: 
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Therefore, in this case, eqn (14) assumes the general expression: 
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which can be written in the synthetic form: 
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From eqn (19) there is local fracture propagation if the following limit condition at a 
generic point along the crack front is verified: 

 3311 a a = a  Crit GGG +  , (20) 

where CritG  is a material property and the modulus 2
3

2
1 aa= a   +  is unknown. 

With the same assumption used to obtain the eqn (11), when VΓ has the A and A’ bases 
parallel to the global 21 XX −  plane, by means of tensor algebra calculations, the eqn. (16) 
becomes: 
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Finally, transforming the surface integral on A + A’: 
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The components of propagation velocity and their derivatives assume constant values on Γ 
and on A, therefore ( 0=1n , 1−=3n  and 3ij iji TnT t  −=−=  on A): 

∫∫
ΓΓ

+−+−σ      )ut(
dX

ad a  )utn(
dX

ad a i,3i
3

i,1i1 
3

dsds 3
3

1
3  

+−+−+ ∫∫
AA

dSdS  )uT(
dX

ada     )uT(
dX

ad 
dX

ad
,i,1i

3
i,1i

33
33

1
33

13  

0    )uT(
dX

ada    )uT(
dX

ad
,i,1i

3
i,3i 

3
=−σ+−σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ∫∫

AA

dSdS 33
3

33

2
3  . (23) 

0   )uT(
dX

ad )uT(
dX

ad 
dX

adG 
dX

ad a G 
dX

ad a i,3i 
3

i,1i
3333

  =−σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−++ ∫∫

AA

dSdS 3

2
3

3
13

3
3

31
1

3 . (24) 

The eqn (24) and the eqn (20) (the two components of the velocity vector field are 
unknown) provide the shape’s evolution of a quasi-statically propagating plane crack in a 
three-dimensional hyperelastic body. 

 
4  CONCLUSIONS 

Under classical hypotheses valid to apply the elastic fracture mechanics theory, a general 
expression of the potential energy release rate, G , for a three-dimensional problem has 
been set up. The general expression obtained in the paper takes into account the effects of a 
non uniform distribution of crack propagation rate along the fracture tip. Moreover 
imposing a linearized stationary condition to G  with respect to a, the crack propagation 
rate vector field, a system of two equations has been set up and it can be used to study 
analytically the evolution of a three-dimensional crack front shape. Suitable boundary 
conditions must be defined depending on the real geometry of the three-dimensional 
fractured body. The authors will execute future applications of the theory exposed in this 
paper to obtain practical results by means of dedicated finite element analyses and 
numerical solution of the crack evolution equations. 
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