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Abstract 

Cohesive zone models (CZMs) may be used in conjunction with finite element (FE) analysis to 

characterise the toughness of composites delamination and adhesive joints. The method uses two 

parameters, the fracture energy  and the cohesive stress cG σ  and varying these parameters 

enables the analysis to describe a wide range of both initiation and steady-state propagation 

behaviour. The usual scheme is to determine  and cG σ  by an inverse method by fitting 

experimental results, and examples will be given of values obtained in delamination and peeling 

tests. The significance of the values will be discussed and particularly the relationship of σ  to a 

constrained yield stress. Other interpretations of the behaviour such as stiffness control will also 

be considered. 

1. Introduction 

The use of cohesive zone models, or traction-separation laws, to define fracture processes 

is now widely employed. The fracture process, as the crack propagates, is modelled in 

terms of a local stress-displacement relationship. The local work done is the area under 

the curve and is the fracture toughness  and the final displacement is that at the crack 

tip and is equivalent to the crack opening displacement . The process may also be 

defined via the maximum, or cohesive stress, 

cG

0v

σ , in the zone. The shape of the curve is 

also a possible variable, including parameters such as the initial stiffness and shape of the 

decreasing part of the curve.  Fig. 1. shows some possible shapes ranging from the very 

simple Dugdale or constant stress (a), through various triangular types (b)-(d), to a 

combination; the trapezoidal (e), and the cubic (f). The various parameters are listed in 

the following Table in which, in addition to the values of  σ  and , we have 0v λ  to 

define the shape and the initial (rising) stiffness . S



 

Model (a) (b) (c) (d) (e) (f) 

0/cG vσ  1 1/2 1/2 1/2 2 1(1 ) / 2λ λ+ −  9/16 

0 /Sv σ  ∞ 1 ∞ 1/λ  11/ λ  27/4 

1 0 /S v σ  -∞ -∞ -1 1/(1 )λ− −  21/(1 )λ− −  0 

 

The shape of the curve does not greatly influence the form of the determination and 

even the most flexible form, (e), gives the range 

cG

01/ 2 / 1cG vσ< < . Thus, if σ  and  

are fixed, the relationship to  is similar in all the forms. The two stiffness parameters 

are however, subject to wide variation dependent upon the shape. The trapezoidal form, 

(e), is widely used because it is flexible and the cubic, (f), because it is convenient in the 

FE codes. 

cG

0v

 

The fundamental question to be addressed is how do we decide upon, or determine, the 

parameters in such models? It is generally accepted that  is a basic parameters of 

fracture, though with plastic deformation its value may be stress-state dependent. For 

high constraint (plane strain) it is assumed to have a minimum value and that the 

plasticity is confined to a small local region at the crack tip. This implies a high 

cG

σ  in the 

model and in such circumstances fracture is governed by a single parameter, , and is 

independent of 

cG

σ . This is linear elastic fracture mechanics (LEFM). When σ  is not large 

then the length scale becomes important and much more complex behaviour occurs. This 

may be illustrated by the simple model of a cantilever with a Dugdale zone as shown in 

Fig. 2. 

2. The Cantilever Model 

The geometry of this model is shown in Fig. 2 and the elastic solution for the energy 

release is: 
2
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when a constant stress zone (Fig 1a) is present the length  is given by: 
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and:  
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and hence when σ → ∞ ,  and  tends to the elastic solution. For a crack 

propagating at  constant, these two relationships give: 

0→ G

cG G=
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Thus  is not constant during propagation but varies from 1/ 43 1.= 3  to  as a varies 

from zero to a >> , i.e. it changes only slightly during propagation and a reasonable 

approximation is = . The end deflection is given by: 
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so that the compliance, / Pδ , on initial loading is dependent on  and hence σ . The 

value of  is also dependent on  and hence there will be nonlinearity for large . For 

constant  propagation, we have: 

P

cG
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for a<< , i.e. a load-displacement relationship which is independent of σ . This type of 

test has been explored numerically using FE and the cubic form of traction-separation 



law [1]. Fig. 3 from [1] shows the load-displacement data for a fixed  (257 J/mcG 2) and 

various values of σ  compared with experimental data for a carbon fibre polymer 

composite (CFRP) in a double cantilever beam (DCB) test. The decreasing stiffness with 

decreasing σ  is apparent as well as the onset of nonlinearity. The propagation data is 

sensibly independent of σ  as expected. Interestingly, the fit to the initial stiffness implies 

high (>30 MPa) values of σ , but it is not possible to define a value with any certainty. 

 

The DCB test also provides an example of how a different model may give an equally 

good fit to the observations. For the composites case an elastic analysis of the region 

beyond the crack tip provides a linear stiffness version of the traction law, see Fig. 1b, 

but in which  may be computed [2]. This gives an explicit expansion for S  [2]: 
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where ,  and 1E 2E µ  are the axial, transverse and shear modulii, respectively. For a 

typical composite, as used here, / 2.h ≈ 5  and the same expression for the maximum 

stress applies although now σ  only acts at 0x = . This gives: 

 
4

2 2 0.017
3

c cEG Eh
h h

σ ⎛ ⎞⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G  

 

For the parameters used here, 1 140E =  GPa, 257cG =  J/m2, 1.5h =  mm we have 

20σ =  MPa, which fits the data well. 

 

This CFRP DCB case also illustrates some general points. Firstly, this is an elastic system 

with local damage. The initial response is essentially linear indicating high σ  values. 

The FE data fits suggest a high σ  but the propagation results, which are steady state, 

serve only to fix . Without knowing cG σ , recourse is made to a stiffness analysis which 



works well and defines σ . Here σ  is close to a local failure stress but could not be 

defined prior to the testing whilst the stiffness, of course, can. More refined studies show 

that measured  values may be compared to the elastic cases and define σ  and the 

damage more precisely [3]. 

3. Peel Testing 
The peeling of flexible laminates, as shown in Fig. 4, provides an example of a fracture 

process accompanied by extensive plastic deformation. In this case the free arm often 

undergoes plastic bending and unbending as the debonding proceeds and, for a 90° peel, 

as shown here, the total energy dissipated per unit area G  is given by . This is the 

sum of the true adhesive energy  and the plastic dissipation, . The latter can be 

computed [1] to correct G  and  is often a significant proportion of  (up to 90%). 

 is a strong function of the root rotation 

/P b

cG dG

dG G

dG 0θ  and this may be computed using a CZM, as 

shown; using either a FE [1] or an analytical model. As in the previous example we may 

define σ , or use a stiffness based analytical solution which can also determine σ . 

Examples of such analyses is shown in Fig. 5, as  versus cG σ . The solid line represents 

the linear-shaped zone analytical model, see Fig. 1b, which is given by: 
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for power law work hardening with n=0.22, [1]. In an experiment G  was 5400 J/m2 and a 

separate LEFM test gave  J/m1080 100cG = ± 2, which is also shown. The stiffness 

controlled solution is a particular point on that line and is at 890 J/m2 and 120 MPa. The 

 value is somewhat lower than that from the LEFM test and cG σ  is about 2.1 times the 

adhesive yield stress which is 50 MPa, and this gives of course a constraint factor of 2.1. 

 

Three cases were run in FE, i.e. 30σ = , 40 and 50 MPa, using the cubic-shaped CZM 

and the values were also shown in Fig. 5. The  values are about 7% less than the 

analytical case. The ‘corrected’ values shown in Fig. 5 were calculated to give agreement 

cG



with the analytical results and were obtained when the stresses were increased by 20%, 

and such an effect is probably due to the shape of the traction-curve. For example, for 

given values of  and , the ratio of the resulting values of cG 0v σ  for the linear (Fig1b) 

compared with the cubic (Fig 1f) shaped CZM would be 18/16=1.13. It should be noted 

that no results could be obtained with FE for 50σ >  MPa, since the programme crashed 

for all larger values. Certainly it seems that in this case σ  is limited to the unconstrained 

yield stress and that the assumption of stiffness control leads to too high a constraint 

factor. 

4. Conclusion 
The LEFM delamination tests illustrate the difficulty of defining σ  even for elastically 

dominated systems. The initial stiffness of the loading curve defines it best, but only to 

the extent of saying that it must be above some value. The propagation phase is 

dependent solely on the value of . The local elastic model provides a good fit to the 

data and can be predetermined. For the peel test the stiffness model gave a rather high 

value of 

cG

σ  and limiting it to about the adhesive yield stress gives the best fit to . This 

indicates a lack of constraint in the adhesive layer during fracture. These two examples 

indicate the range of behaviour it is possible to model and the uncertainty in defining 

cG

σ . 
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a) Dugdale or constant stress form. 
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b) Linear form. 
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c) Linear damage form. 
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d) Triangular form. 
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FIG. 1. Forms of traction separation laws. 
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FIG. 2. The cantilever model with a constant stress zone. 

vx
h 

a ℓ



 

 

0

20

40

60

80

100

120

0 5 10 15 20

σ
max

=1 MPa

σ
max

=5 MPa

σ
max

=10 MPa

σ
max

=30 MPa

Experimental σ
max

=0.1 MPa

σ
max

=0.5 MPaInitiation CZM/FEA

Ap
pl

ie
d 

Lo
ad

 (N
)

Load Line Displacement (mm)

0.5 MPa

1 MPa

5 MPa

10 MPa

Initiation at 30 MPa

0.1 MPa

 
 

FIG. 3. Load displacement data for a CFRP, DCB test. 
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FIG. 4. The peeling of a flexible laminate. 
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FIG. 5. Gc as a function of σ  for a peel test. 
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