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ABSTRACT 

Computational modeling of fracture in disordered (heterogeneous) media using discrete lattice models is 
often limited to small system sizes due to high computational cost involved in re-solving the governing 
system of equations every time a new lattice bond is broken. For two-dimensional simulations, this paper 
proposes an efficient algorithm based on multiple-rank sparse Cholesky downdating scheme. Based on the 
proposed algorithm, the authors present simulation results for large 2D lattice systems (e.g., L=1024), which 
to the authors knowledge, is so far the largest lattice system used in studying the damage evolution. For three-
dimensional simulations, we propose efficient algorithms based on iterative schemes. The block-circulant 
preconditioner and the current algorithm based on superfast Toeplitz solver are intended for large-scale 3D 
discrete lattice simulations.  
  

1 INTRODUCTION  

Progressive damage evolution leading to fracture of disordered (heterogeneous) quasi-brittle 
materials has been studied extensively by material scientists, physicists, and engineers for many 
years (Herrmann [1], Hansen [2], Krajcinovic [3], Sahimi [4], Bazant [5], van Mier [6]). 
Qualitatively, progressive damage evolution in disordered (heterogeneous) quasi-brittle materials 
is characterized by three distinct stages of damage evolution, namely, diffusive damage, crack 
growth, and crack coalescence (localization) stages. The diffusive damage accumulation stage 
reflects the pre-existing material disorder (heterogeneity), and the later stages of crack growth and 
coalescence reflect the dominance of stress concentrations over the pre-existing material disorder.  

Discrete lattice models have often been used in simulating damage evolution in broadly 
disordered quasi-brittle materials (de Arcangelis [7], Sahimi [8], Herrmann [1], Hansen [2]). In 
these models, damage is accumulated progressively by breaking one bond at a time until the lattice 
system falls apart. Large scale numerical simulation of these discrete lattice networks has often 
been limited due to the fact that a new large set of equations has to be solved every time a lattice 
bond is broken. Since the number of broken bonds at failure, nf, increases with increasing lattice 
system sizes, L, i.e., nf ~ O(L1.9), numerical simulation of large lattice systems becomes 
prohibitively expensive. Furthermore, in fracture simulations using discrete lattice networks, 
ensemble averaging of numerical results is necessary to obtain a realistic representation of the 
lattice system response. This further increases the computational cost associated with modeling 
fracture simulations in disordered quasi-brittle materials using large discrete lattice networks.  

To address this problem, the present study proposes two alternatives. The first algorithm is 
based on Davis and Hager’s (Davis [9], Davis[10]) multiple-rank sparse Cholesky downdating 
scheme using sparse direct solvers, and is especially suitable for two-dimensional simulations. 
Using this algorithm, the authors present simulation results for large 2D lattice systems (e.g., 
L=1024), which to the authors knowledge, is the largest lattice system used for studying the 
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damage evolution in disordered materials starting with initially intact lattice systems.  
The second class of algorithms is based on iterative techniques. Although the above algorithm 

based on sparse direct solvers is superior to iterative solvers in two-dimensional simulations, for 
3D systems, the memory demands brought about by the amount of fill-in during sparse Cholesky 
factorization favor iterative solvers. However, critical slowing down associated with the iterative 
solvers close to the macroscopic fracture often hinders large-scale simulation of fracture using 
iterative techniques. The critical slowing down of the iterative solvers is associated with the 
increasing condition number of the system of linear equations as the lattice system gets closer to 
macroscopic fracture. That is, the number of iterations required to attain a fixed accuracy increases 
close to macroscopic fracture. This paper presents two iterative algorithms that alleviate the 
critical slowing down. The first one is based on block-circulant preconditioner (Chan [11], Chan 
[12], Nukala[13]), using which the authors have been able to simulate large 3D systems (e.g., 
L=48). The second algorithm is based on superfast Toeplitz solver (Stewart [14]). 
 

2  MODEL 
The discrete lattice beam model considered in this work is a random thresholds model, and has 
been studied extensively for simulating fracture of quasi-brittle materials (de Arcangelis [7], 
Sahimi [10], Herrmann [1], Hansen [2], Sahimi [4], van Mier [6]). In the random thresholds model 
with (linear) beam elements, the lattice is initially fully intact with bonds having the same 
stiffness, but the bond breaking stress thresholds, t, are randomly distributed based on a thresholds 
probability distribution, p(t). The breaking of a bond occurs irreversibly, whenever the effective 
stress in the bond exceeds the breaking threshold stress value, t, of the bond. Periodic boundary 
conditions are imposed in the horizontal direction to simulate an infinite system and a constant 
displacement, ∆, is applied at the top while constraining the bottom row of nodes of the lattice 
system.  

Numerically, a unit displacement, ∆=1, is applied at the top of the lattice, and the resulting 
system of linear equations (A x=b, where A is the assembled global stiffness matrix, x the nodal 
displacement vector, and b the external nodal force vector) is solved to determine the x. Using the 
nodal displacements x, the local forces and the effective stress in each of the bonds is evaluated. 
Subsequently, for each bond j, the ratio between the effective stress sj and the bond breaking 
threshold tj is evaluated, and the bond jc having the largest value, maxj(sj/tj), is irreversibly 
removed (broken). The stresses are redistributed instantaneously after a bond is broken implying 
that the stress relaxation in the lattice system is much faster than the breaking of a bond. Each time 
a bond is broken, it is necessary to re-calculate the stress (or force) redistribution in the lattice to 
determine the subsequent breaking of a bond. The process of breaking of a bond, one at a time, is 
repeated until the lattice system falls apart. In this work, we consider both a uniform bond 
breaking thresholds probability distribution, which is constant between 0 and 1, and also a 
mapping of the heterogeneity based on a randomly generated computer particle images.  

This study considered numerical simulations on triangular lattice topology for 2D systems, 
and cubic (FCC) lattices for 3D systems. For many lattice system sizes, the number of sample 
configurations, Nconfig, used are excessively large to reduce the statistical error in the numerical 
results. Each numerical simulation was performed on a single processor of Eagle (184 nodes with 
four 375 MHz Power3-II processors) supercomputer at the Oak Ridge National Laboratory. The 
statistically independent Nconfig number of configurations were simulated simultaneously on 
number of processors available for computation. 
 
 



3  ALGEBRAIC PROBLEM 
Algebraically, fracture of discrete lattices by breaking one bond at a time is equivalent to solving a 
new set of linear equations (Anxn=bn, for all n=0,1,2,…) every time a new lattice bond is broken. 
In the above expression, each matrix An is an N-by-N symmetric and positive definite matrix, bn is 
the N-by-1 (given) applied nodal current or force vector, xn is the N-by-1 (unknown) nodal 
potential or displacement vector, and N is the number of degrees of freedom (unknowns) in the 
lattice. The subscript n indicates that An and bn are evaluated after the nth bond is broken. The 
solution xn, obtained after the nth bond is broken, is used in determining the subsequent ((n+1)th) 
bond to be broken. The matrices An and bn are obtained from the element (bond) matrices using 
the standard finite element assembly procedure (Hughes [15]). 

Mathematically, breaking of a bond in a discrete lattice model is equivalent to downdating of 
the matrix A. For example, in the case of electrical fuse and spring models, breaking of a bond is 
equivalent to a rank-one downdate of the matrix A, while for a 3D beam model, breaking of a 
bond is equivalent to multiple-rank (rank-6) downdate of the matrix A. Furthermore, it is noted 
that if the Cholesky factorizations are  
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for each n=0,1,2,…, where P is a permutation matrix chosen to preserve the sparsity of Ln, then 
the sparsity pattern of Ln+1 is contained in that of Ln. Hence, for all n, the sparsity pattern of Ln is 
contained in that of L0.  

Based on the above description of successive An for n=0,1,2,…, an updating scheme of some 
kind is therefore likely to be more efficient than solving the new set of equations formed by 
Anxn=bn for each n. In particular, since the successive matrices An, for each n=0,1,2,…, differ by a 
rank-six matrix, we successively update the Cholesky factorizations Ln of An, using the sparse 
Cholesky factorization update algorithm of Davis and Hager  (Davis [9], Davis[10]). That is, we 
use multiple-rank sparse Cholesky updating scheme to update  for each n.  1+→ nn LL
 
3.1 Sparse Cholesky Factorization Update:  1+→ nn LL
The algorithm presented in (Davis [9], Davis [10]) is based on the analysis and manipulation of the 
underlying graph structure of the stiffness matrix A and on the methodology presented in (Gill 
[16]) for modifying a dense Cholesky factorization. In particular, since the breaking of bonds is 
equivalent to removing the edges in the underlying graph structure of the stiffness matrix A, the 
new sparsity pattern of the modified L must be a subset of the sparsity pattern of the original L. 
Denoting the sparsity pattern of L by , we have , m<n. Therefore, we can use the 
modified dense Cholesky factorization update (Davis [9]) and work only on the non-zero entries in 
L. Furthermore, since the changing non-zero entries in L depend only on the on the variables 
associated with the ith and jth nodes of the bond ij that is broken, it is only necessary to modify the 
non-zero elements of a submatrix of L.  

⊇

The multiple-rank sparse Cholesky update algorithm updates the Cholesky factorization Ln of 
the matrix An to Ln+1 of the new matrix An+1, where , and Y represents a N-
by-p rank-p matrix. The pseudo-code in Algorithm 1 follows the matlab syntax (Golub [17]) and 
its sparse matrix functionalities very closely. The following notation is used. zeros(m,n): an m-by-
n matrix of zero entries; L(i1:i2,j) = L(i1:i2,j): refers to entries corresponding to i1

th to i2
th rows of 

column j of the matrix L; [ilist, jlist, val] = find(L(i1:i2,j)): extracts the sparsity pattern of 
L(i1:i2,j). That is, the non-zeros of L(i1:i2,j) are stored in val, and the corresponding row and 
column indices are stored in ilist and jlist, respectively; j+ilist: increment each of the entries of ilist 
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by j; length(ilist): length of the vector ilist; Sparse(ilist,jlist,val,m,n): create a m-by-n sparse 
matrix with non-zero entries val located at the row and column indices given by ilist and jlist 
respectively. Using the above notation, the multiple-rank sparse Cholesky factor update (σ=+1) or 
downdate (σ=-1) algorithm, Ln+1 = SpChol(Lm, Y, σ), where , and 
Y represents a N-by-p rank-p matrix, is given by  
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Given the factorization Lm of Am, rank-1 sparse Cholesky update/downdate (Algorithm 1) is 
used to update the factorization Ln+1 for all subsequent values of n=m,m+1,…. Once the 
factorization Ln+1 of An+1 is obtained, the solution vector xn+1 is obtained by a backsolve operation 
of . 1111 +=+++ nn

t
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3.2 Iterative Algorithms 
As mentioned earlier, although the algorithm based on sparse direct solvers achieve superior 
performance over iterative solvers in 2D lattice simulations, the available memory poses a severe 
constraint over the usage of sparse direct solvers for 3D lattice simulations due to the amount of 
fill-in during sparse Cholesky factorization. In this regard, we propose the block-circulant 
preconditioner  (Chan [11], Chan [12], Nukala [13]) and an algorithm based on superfast Toeplitz 
solver (Stewart [14]).  

The main observation behind the iterative schemes developed in here is that the initial 
stiffness matrix A0 is a Toeplitz matrix since the initial lattice grid is uniform. Hence, a fast 
Poisson type solver with a circulant preconditioner can be used to obtain the solution in O(N logN) 
operations using FFTs of size N. However, as the lattice bonds are broken successively, the initial 
uniform lattice grid becomes a fractal network. Consequently, although the matrix A0 is Toeplitz 
(also block Toeplitz with Toeplitz blocks) initially, the subsequent matrices An, for each n, are not 
Toeplitz matrices. However, An may still possess block structure with many of the blocks being 
Toeplitz blocks depending on the pattern of broken bonds. 
 
3.2.1 Block Circulant Preconditioner 
Let the matrix A be partitioned into r-by-r blocks such that each block is an s-by-s matrix. That is, 
N=rs. Since each of the blocks of An are Toeplitz (or even circulant), it is possible to to choose a 
block-circulant preconditioner obtained by using circulant approximations for each of the blocks 
of An. It is the minimizer of  over all matrices C that are r-by-r block matrices with s-
by-s circulant blocks. In addition, we have  
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In particular, if A is positive definite, then the block-preconditioner  is also positive 
definite. 

)(ABc

In general, the average computational cost of using the block-circulant preconditioner per 
iteration is O(rs log s)+delops, where delops represents the operational cost associated with 
solving a block-diagonal matrix with r-by-r dense blocks. For 2D and 3D discrete lattice network 
with periodic boundary conditions in the horizontal disrection, this operational cost reduces 
significantly. The reader is referred to (Nukala[13]) for further details on block-circulant 
preconditioners for discrete lattice networks.  

 
3.2.2 Algorithm Based on Superfast Toeplitz Solver 

Since breaking of bonds successively is equivalent to , where Y is a N-by-p 
rank-p matrix with at most twelve non-zero entries (for beam models,, p=6) in each of the 
columns, we propose to use the following algorithm to update the solution vector xn+1. Note 

that
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each of the Y matrices corresponding to the (n+1) broken bonds respectively.  

 
It should be noted that B z3

(i) can be calculated successively as B z3
(i) = s Vn

t TzSolve(A0, (Vn z3
(i) )) 

4  SUMMARY 

This paper proposes two classes of efficient algorithms based on sparse disrect solvers and 
iterative solvers for large scale simulation of fracture in broadly disordered (heterogeneous) media 
using discrete lattice networks. The proposed methodology is applicable for scalar models such as 
random fuse models as well as vector models based on spring, beam and born models. For two-
dimensional simulations, the algorithm based on multiple-rank sparse Cholesky downdating 
scheme is computationally most efficient. Based on the proposed algorithm, the authors present 
simulation results for large 2D lattice systems (e.g., L=1024), which by far the largest lattice 
system used in studying the damage evolution in quasi-brittle materials. However, the memory 
constraints imposed by the amount of fill-in during sparse Cholesky factorization limits the 
applicability of sparse direct solvers for large scale 3D simulations. The present study proposes 
two efficient iterative techniques based on block-circulant preconditioner and an algorithm based 
on superfast Toeplitz solver to alleviate the critical slowing down associated with the iterative 
techniques close to macroscopic fracture. The block-circulant preconditioner has been used in 
simulating a cubic lattice network of size L=48. Further research is underway in extending the 
simulation capabilities for 3D discrete lattice systems.  
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