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ABSTRACT 

A review is given about present-day FEM-techniques to compute the coupled electromechanical boundary 
value problem of cracks in three-dimensional piezoelectric structures. The aim is to calculate the relevant 
fracture parameters very precisely and efficient, which requires to account for the singularity of the mechanical 
and electrical fields at crack tips in the numerical treatment. The following specialized techniques are presented 
in detail: i) Special singular crack tip elements, ii) Determination of intensity factors KI – KIV from near tip 
fields, iii) Modified crack closure integral and iv) Computation of electromechanical J-integral. Special em-
phasis is devoted to different electric crack face boundary conditions. The accuracy, efficiency and applicability 
of these techniques are examined by various example problems and discussed with respect to their advantages 
and drawbacks for practical applications.  
 

1 INTRODUCTION 
Piezoelectric materials have widespread applications in modern technical areas such as mecha-
tronics, micro system technology or smart structures, where they serve as sensors, actuators or 
transducers. For the assessment of strength and reliability of piezoelectric structures under com-
bined electrical, mechanical and thermal loading, the existence of crack-like defects plays an im-
portant role. Fracture mechanics of piezoelectric materials has been established quite well in the 
last decade, see the review papers [1-2] including literature cited there. However, only a few exact 
solutions for three-dimensional (3D) crack problems are available, regarding circular or elliptic 
cracks in the infinite domain. Most of these solutions imply simplified electrical boundary condi-
tions at the crack faces, assuming either an isolating or fully electrically permeable behavior, 
whereas real cracks are filled with dielectric or conducting media. Therefore, numerical methods 
as finite elements (FEM) are required to analyze realistic crack configurations and loading situa-
tions in technical components.  
 

2 PIEZOELECTRIC FRACTURE MECHANICS 
The constitutive equations (1) for a piezoelectric material relate the stress tensor ijσ  and the di-
electric displacement vector iD  to the strain tensor ijε  and the electric field iE , where   

,ij ijkl kl kij k i ijk jk ij jc e E D e Eσ ε ε κ= − = +                                        (1) 

, ,ijkl kij ijc e κ  are the elastic, piezoelectric and dielectric constants. At each point along the crack 
front the asymptotic electrical and mechanical fields [1-3] are controlled by the three known me-
chanical stress intensity factors (KI, KII, KIII) as well as the fourth “electric displacement intensity 
factor” KIV , where (r,θ, x3)= (x1, x2, x3) is the crack tip coordinate system, see Fig. 1. The gener-
alized tractions t on the ligament ahead of the crack (θ=0) have the singular form 
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The discontinuities of displacements ui and electric potential ϕ  across the crack faces behave as 
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The energy release rate G is defined as the difference of total (electric enthalpy and mechanical 
potential) energy ΔΠH in a structure, if the crack grows by an area ΔA. mG  and eG  denote the 
mechanical and electric terms of G . The relation to the intensity factors K is given by the gener-
alized Irwin matrix Y, which depends on the elastic, piezoelectric and dielectric material constants. 
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Fig. 1 Virtual crack extension ∆A along the crack front and J-integration domain  

The electromechanical em
kJ -integral-vector is a generalization of Rice-Eshelby theory to cracks in 

2D piezoelectric materials [1,2]. In the absence of body loads and inhomogeneities it becomes 

path-independent. Its x1-component has the physical interpretation of energy release rate 1
emJ G= . 

In the 3D case, a virtual crack extension kl  is considered along the crack front segment cL  with 

the area A∆ . Then, the released energy can be expressed by a surface integral (5) enclosing cL . 
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3 FINITE ELEMENT TECHNIQUES FOR 3D CRACK ANALYSIS 
Finite element analysis of piezoelectric structures under combined mechanical and electric load-
ings is meanwhile available in several commercial codes. However, to deal with cracks requires 
some special techniques and know-how. Many of the numerical algorithms, developed for crack 
analyses in pure elastomechanics [4] and for 2D electromechanical cracks [5,6,7] can be general-
ized or adapted to the 3D coupled electromechanical crack problem. 
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Fig. 2 Typical finite element mesh along crack front (left), 3D crack tip elements (right) 
 

3.1 Singular electromechanical crack-tip elements (CTE) 
In order to calculate accurate intensity factors, a proper representation of the crack tip singularity 
(2)(3) in the finite element approach is necessary. The simplest and most comfortable technique to 
create such special crack tip elements is a distortion of regular hexahedron (20 noded) or pentahe-
dron (15 noded) elements with quadratic shape functions into so-called quarter-point elements.  

It can be shown [4,7,8] that the shape functions are simply modified into a 1 2r−  behavior, if the 
mid-edge nodes are shifted into the ¼-position. Then, the crack front is discretized by groups of 
concentric pentahedron elements as illustrated in Fig. 2. The SIFs are obtained by comparing the 
analytical crack tip solution to the FEM results in the singular elements. A convenient formula for 
the vector K is deduced, if the discontinuities of the nodal displacements (3) across the crack faces 

B∆u  (indicated by letter B and B’ etc.) are interpreted [9]                       (6) 
2
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The parameter ξ  is the local element coordinate along the crack front. L denotes the length of the 

element edge between the nodes A and C or G and F. 
 

3.2 Modified crack closure integral (MCCI) 
Crack closure integrals [4,5,7] are well suited to compute the electromechanical energy release rate 
G  for 3D crack problems [8,10], too. Assuming an arbitrary shaped finite advance of the crack 
front, G equals the electromechanical work per area A∆  during a virtual crack closure process. 
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crack growth 0  A A= , whereas { }1 2 3, , , Tu u u ϕ∆ = ∆ ∆ ∆ ∆u  denotes the values of crack opening 

displacements and electric potential difference after crack growth 0A A A= + ∆ . The finite ele-

ment realization of (7) leads to the MCCI technique. This means, G  is approximated by multi-

plying the nodal forces kjF  and nodal charges jω  in front of the crack tip with the correspond-

ing nodal displacements kju∆  and electric potential jϕ∆  behind the crack tip, see Fig. 3 and (8). 

The arc length along the crack front is denoted by w. The first index (k) indicates the coordinate 

direction and the second one (j) the corresponding pair of nodes. This procedure requires only one 

FEM calculation and can be utilized with regular [10] or singular [8] elements. There exist various 

schemes, how to weight the area parts jA∆  corresponding to every node j. The best results were 

achieved by the choice given in (8), delivering G for the middle node. 
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Fig. 3 Finite elements along three-dimensional crack front for MCCI 

 
3.3 Electromechanical J-integral as equivalent domain integral (JEMD) 

For the numerical computation of 
em

J , it is advantageous to transform (5) into an equivalent do-

main integral over V. Therefore, a vectorial weighting function kq  is introduced, which equals the 

virtual crack extension kl  at the crack front cL , but falls down to zero at the outer surface S  

and endS . Finally, the local crack front value is found by ( ) /
em

G w J A= ∆ , see [11]. 
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 Fig. 4 Finite element mesh for an elliptical crack (1/4 model, 976 elements 4729 nodes) 

 

 

 
 
 

 
 
 
 
 
 
 
 

Fig. 5 G for embedded elliptical crack:  Comparison of FEM-results with exact solution 

 
4. APPLICATION TO ELLIPTICAL CRACK PROBLEMS 

As a verification example the embedded elliptical crack subjected to uniform normal traction 22σ ∞  

and electric surface charge 2D∞  has been investigated, see Fig. 5. The crack front position is de-

scribed by the parametric angle φ  of the ellipse with its semi-axes c and a. From the exact solu-

tions [2,10] expressions of stress and electric field intensity factors were derived 
2 2 1 4

22 2
1  ( cos )( , , ) , ( , , ) ,

( )I I IV IV I IV
kK g a c a K g a c D a g g

E k
φφ σ π φ π∞ ∞ −

= = = =      (10) 

   

a 

2c 

f 



 

  

where ( )E k  is the elliptical integral of the second kind with argument 2 2 21k a c= − . The pie-
zoelectric material PZT-5H is used with poling perpendicular to the crack. Fig. 4 shows a repre-
sentative mesh and the details at the crack tip for an aspect ratio 2c a = . The intensity factors KI, 
KIV computed by FEM with CTE-technique have an accuracy better than 1.5 % compared with 
(10). Also, the distributions of G achieved by the FEM-techniques of CTE, J-integral and MCCI 
agree well with the exact solution, as can be see in Fig. 5.  
 

5 CONCLUSIONS 
The developed FEM techniques provide a powerful tool to deal with 3D crack problems in piezo-
electric materials. They are available for engineering applications, covering a wide range of more 
general crack configurations and loading situations. All three proposed finite element techniques 
for electromechanical crack analyses are verified by and applied to a variety of 3D crack problems 
[9-13]. All techniques can be easily implemented as post-processors for standard FEM codes, 
whereby the J-integrals requires the greatest effort and skill. The singular piezoelectric crack tip 
elements CTE yield most accurate predictions of electric and mechanical intensity factors com-
pared to both other techniques. The implemented J-domain integral delivers the total energy re-
lease rate with highest precision and should be combined with CTE. Its path independence allows 
for inherent error control. A good accuracy for determining the energy release rate could be guar-
anteed by the modified crack closure integral technique with standard finite elements. Compared 
with the J-integral method, the MCCI-technique possesses the advantage that the energy release 
rate can be separated for the different mechanical opening modes (I, II, III) and the electric mode 
(IV). How limited crack permeability can be treated is shown in [12]. The generalization of 
FEM-techniques to 3D thermo piezoelectric crack problems is addressed in [13]. 
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