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ABSTRACT

The continuum theory of fracture has many great successes, but there are certain questions it cannot ob-
viously answer. One of these questions concerns the direction of crack motion. Crack directions are usually
thought be chosen by the principle of local symmetry. The goal here is to examine carefully a case where one
might expect the principle of local symmetry to hold, and to show that it does not. The setting for the study is a
molecular dynamics simulation of fracture with very simple force laws contrived so that at large length scales
it completely replicates isotropic continuum elasticity. Because at a macroscopic level, this numerical material
cannot be distinguished from a continuous isotropic solid, one might believe that a crack moving in it should
obey the principle of local symmetry when it chooses directions. However, that is not correct. At small length
scales, the solid is crystalline, and the crack is confined to crystalline planes in a fashion that the principle of
local symmetry cannot predict. These arguments do not show that the principle of local symmetry is generally
incorrect, but they do show that it does not hold in at least one case that can be studied carefully.

1. INTRODUCTION

Much of the theory of dynamic fracture concerns cracks that are assumed to move along a straight
lines[1, 2]. There are many cases where they do not; for example, when much more energy is
supplied to an object than needed to drive a single crack, in which case repeated branching usually
shatters the body into many pieces. There are cases where single rapidly running cracks do not travel
in straight lines, as in cracks running along pressurized pipelines. As a matter of principle, it would
seem impossible to call the theory of dynamic fracture complete unless one can predict the shapes
of crack paths, and not just their speeds on straight lines.

Before one can predict crack paths, it is necessary to decide what features of a solid are relevant.
One possibility is that macroscopic elastic properties are all one really needs to know. If this were
correct, then all cracks traveling under identical loading conditions in elastically isotropic solids
would move in the same way. The rule universally used to predict crack directions is the principle
of local symmetry[3, 4], which says that cracks travel in such a direction thatKII vanishes with
no reference to the structure of the material at all. However, it would seem natural for material
microstructure to be able to influence the direction of crack motion. When cracks cleave crystals, one
expects them to travel preferentially along crystalline planes. Careful experiments on quasi-static
cracks in silicon loaded through thermal gradients show their behavior to be quite different from
similarly loaded cracks in glass[5]; for example, when slowly driven thermal cracks in glass begin to
exhibit oscillating paths, the transition between straight and oscillating motion is supercritical[6, 7],
while in silicon single crystals it is subcritical and hysteretic.

However, the existing experimental data leave room for arguments about what factors are really
important for crack motion. Silicon is crystalline at small scales, but it is also macroscopically or-
thotropic rather than isotropic. Perhaps the elastic properties of silicon alone are enough to explain
the differences between crack paths in silicon and glass; in a material that is not isotropic, the prin-
ciple of local symmetry need not apply. Therefore, it would be useful to have a case in which the
separate influence of macroscopic elasticity and microstructure can be disentangled. This goal has
not yet been carried out with laboratory experiments, but it is fairly easy to achieve with numerical
experiments, as this article will describe. The numerical experiments are performed on simple model
systems, using classical molecular dynamics. The point of view regarding these systems is that they
could be realized in the laboratory if only there happened to be atoms with such simple interactions.
At any rate, the principles of fracture mechanics should apply to these numerical systems as well
as to any laboratory sample, and if they do not, then the principles of fracture mechanics are not as



general as one think. Numerical computations have the great advantage that boundary conditions of
fracture samples can be controlled with a precision that is simply impossible in the laboratory, and
cracks can be followed with great precision as well. Sometimes such computations are dismissed
on the grounds that they describe such small numbers of atoms that they have nothing to say about
macroscopic materials. However, scaling arguments allow one to relate small samples to macro-
scopic ones[8], and thus the conclusions from the computations have macroscopic implications.

2. IDEAL BRITTLE CRYSTAL

The material in which I will investigate crack motion is an ideal brittle triangular crystal with
equilibrium lattice spacinga in which atoms obey the equation of motion (1)

m~̈ui =
∑

j

[
~f(~uji) + ~g(~̇uji, ~uji)

]
, (1)

with ~uji ≡ ~uj − ~ui. The functions~f and~g have the specific forms

~f(~r) = κr̂(r − a)θ(rc − r); ~g(~̇r, ~r) = β~̇r θ(rc − r). (2)

Atoms interact with a central forcef that varies linearly around the equilibrium spacing of length
a, and whose scale is set byκ. If the distance between atoms increases to more thanrc, the force
drops abruptly to zero. In addition, atoms experience Kelvin dissipationg; its scale is set byβ, is
proportional to the relative velocities of neighbors, and also drops to zero when the distance between
neighbors exceedsrc.

In general, crystals have anisotropic elastic properties at large scales. However, the triangular
lattice is an exception. The macroscopic elastic theory of this crystal is homogeneous and isotropic,
with Young’s modulusY = (5

√
3/4)(κ/a) and Poisson’s ratioν = 1/4.

The Kelvin dissipation also deserves comment. In a macroscopic theory of fracture, Kelvin dis-
sipation is forbidden, because a moving crack tip singularity in a material with such a dissipative
term dissipates an infinite amount of energy. In a microscopic theory, such terms are expected and
natural. The resolution of this apparent conflict is that in the continuum limit, the magnitude of the
dissipate term in Eq. (1) must go to zero in just such a way as to keep the total dissipation in the
vicinity of the tip finite.

The geometry in which I will study cracks is depicted in Fig. 1.

3. SOLUTIONS OF MODEL

Fracture properties of this model can be obtained analytically in the limitrc → 1, which means
that bonds snap when they are stretched just a tiny distance above their equilibrium length. First,
one can find that for fracture first to be energetically possible, one rigidly raises the top of the crystal
above its equilibrium position by a vertical distanceyc

yc =
2√
3
(rc − a)

√
N − 1. (3)

In addition, in the limitrc → a steady state cracks in this crystal are described by exact analytical
solutions[9–12]. The most important observation to extract from these solutions is that the natural
dimensionless measure of how much one has loaded the crystal is obtained by rigidly displacing its
upper surface a distanceδy and then forming the ratio

∆ ≡ δy/yc. (4)

That is,∆ is a variable proportional to the strain applied far ahead of the crack. It equals 1 when
the crystal has been loaded precisely to the Griffith point where fracture first becomes possible. The
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Figure 1: Setting for numerical experiment to find steady crack states. Atoms are originally arrayed in triangular
lattice 80 rows high, and three times as long as it is tall. Primitive vectors for the equilibrium lattice area(1 0)
anda(1/2

√
3/2). The crack tip is defined as the location of the rightmost atom whose nearest vertical neighbor

is at distance greater than2.5a. When the crack tip approaches within60a of the right boundary, 10 columns
of new crystal are attached to the right boundary, and the same amount discarded from the left hand side. In
the discussion leading to Eq (4), top and bottom rows of atoms are held rigid and stretched vertically apart by a
distanceδy. To produce Figure 3,the top boundary is also slid horizontally relative to the bottom by an amount
δx.
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Figure 2: Relationship between velocityv and dimensionless loading∆ for lattice strips of varying heightN
in pure tension. The calculations are performed in the limitrc → a with Kelvin dissipationβ = 0.01 with
the Wiener–Hopf technique[9–11]. The left–hand portions of the curve are almost completely independent of
system height. The cracks are presumed to travel along a weak interface that precludes transverse instabilities,
and therefore the curves continue up and through the Rayleigh wave speedcR. Were the curves to be terminated
at the points where cracks become unstable in homogeneous crystals, they would be nearly indistinguishable.
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Figure 3: Color contour plots of tensile stress fieldσθθ surrounding crack tips in strips with rigid vertical
tensile (δy) and horizontal shear (δx) displacements of upper and lower boundaries, computed from solutions
of Eq. 1. Arrows show directions the cracks should turn according to local symmetry. Instead, they travel
stably forever along the horizontal axis. The circular stress islands to the left of the crack result from averaging
over high–frequency waves emitted by the crack and traveling left to right. (A) SystemN = 150 rows high,
δy/yc = 1.29, δx/δy = .23, rc = 1.2, force constantκ = 1, and Kelvin dissipationβ = 2, resulting in a
crack velocityv/cR = .01. (B) As in (A), butN = 200 rows high and Kelvin dissipationβ = .02, resulting
in a crack velocityv/cR = .83. The smaller value ofβ is completely responsible for the larger crack speed.
The larger system is chosen because details of the fast–moving crack are more difficult to resolve.

analytical solutions demonstrate that if one measures crack speedv and plots it as a function of
loading∆, the results become independent of system heightN to better than 1% for surprisingly
small values ofN , on the order ofN = 50, as shown in Figure 2. This statement is true so long
as the crack speed is not too large. Continuum theory predicts that cracks in tension cannot exceed
the Rayleigh wave speedcR, which for this model equals.563

√
κa2/m. Figure 2 shows that crack

speed is practically independent of system height forN > 50 andv < .9cR.
The model Eq. (1) is more realistic whenrc = 1.2a than in the limitrc → a, since atomic bonds

in real brittle materials actually give way when extended by about 20%. Forrc = 1.2, analyti-
cal techniques are no longer available to provide exact solutions. However, the scaling properties
provided by the analytical solutions continue to hold. The relationship between crack speedv and
loading∆ is practically independent of system heightN onceN reaches a value of around 50. As a
result one can accurately predict the relationship between crack velocityv and loading∆ up to the
macroscopic limit by performing computations in systems of microscopic dimensions.

Having established that microscopic computations have a legitimate macroscopic interpretation, I
will now set out to show that the principle of local symmetry does not always correctly predict crack
paths. Instead there is an interplay between the direction preferred by far–field stresses, and the
direction preferred by microstructure. This conclusion comes from seeding cracks on the centerline
of strips as in Figure 1, but then loading them with a mixture of tension and shear. The top and
bottom boundaries are displaced vertically by distanceδy and horizontally by distanceδx.

The main result is represented in Figure 3. This figure shows contours of the tensile opening stress
surrounding crack tips moving at two different speeds in a crystal. The contours are tilted away from
the horizontal axis. The principle of local symmetry predicts that a crack tip surrounded by such
stress fields should rapidly turn and move toward the tip of the largest lobe. However, the cracks
move steadily and stably along the horizontal axis forever. These cracks follow crystal planes, not
external stress fields. It should be emphasized that the macroscopic elastic properties of a triangular
crystal are completely isotropic. Only the presence of atomic–scale planes can explain the failure of
the cracks to follow the directions predicted by local symmetry.

To check the principle of local symmetry, it is necessary to compute the continuum elastic fields



surrounding these cracks. This task has been performed in two ways, which agree. First, the elastic
stress fields were computed directly from the positions of atoms in the simulation by taking binned
spatial averages in volumesV0 where~fij is the force between atomsi andj[13]. Second, the system
was viewed as a fracture in a continuous elastic strip, and the stress fields around the crack tip were
computed exactly with techniques of fracture mechanics[14].

The cracks in Fig 3 travel in lattices where the upper boundary is rigidly displaced by amounts
(δx, δy), whereδx/δy = tan(.073π). Fracture mechanics calculation predicts that tensile stresses
are maximal at angles ofθ = −16◦ (case (A)) andθ = −57◦ (case (B)) to thex axis. Therefore,
the principle of local symmetry predicts that the crack in (A) should quickly turn and travel at an
angle of−16◦, and the crack in (B) should quickly turn along an angle of−57◦. The arrows in
Fig. 3 show these directions of crack motion as predicted by the principle of local symmetry. Stress
contours, computed directly from spatial averages over interatomic forces, indeed have lobes in the
directions continuum theory predicts. But the cracks do not move in these directions. Instead, they
travel endlessly along the crystal planes defined by thex axis.

4. CONCLUSIONS

The calculations described here show that it is possible to have a homogeneous isotropic elastic
solid where cracks are trapped along crystal planes, and cleave them rather than choosing directions
that would be expected from the principle of local symmetry. This does not mean that the principle
of local symmetry is always wrong; in amorphous materials where it is hard to see what else could
be true, the principle of local symmetry appears to agree with experiment[15]. It seems likely that
there should exist a generalization of the principle of local symmetry that uses information about
the anisotropy of crystalline fracture energies to obtain an improved equation of motion. However,
preliminary attempts to obtain such a rule have not been successful[16]. Thus it is not yet possible
to say that the physical laws governing the direction of crack motion are understood.

5. ACKNOWLEDGEMENTS

The National Science Foundation (DMR-9877044 and DMR-0101030) supported this work.

[1] K. B. Broberg,Cracks and Fracture. San Diego: Academic Press, 1999.
[2] L. B. Freund,Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1990.
[3] R. V. Goldstein and R. Salganik, “Brittle fracture of solids with arbitrary cracks,”International Journal of

Fracture, vol. 10, pp. 507–523, 1974.
[4] G. E. Oleaga, “Remarks on a basic law for dynamic crack propagation,”Journal of the Mechanics and

Physics of Solids, vol. 49, pp. 2273–2306, 2001.
[5] R. D. Deegan, S. Chheda, L. Patel, M. Marder, H. L. Swinney, J. Kim, and A. de Lozanne, “Wavy and

rough cracks in silicon,”Physical Review E, vol. 67, p. 066209, 2003.
[6] A. Yuse and M. Sano, “Transition between crack patterns in quenched glass plates,”Nature, vol. 362,

pp. 329–31, 1993.
[7] O. Ronsin, F. Heslot, and B. Perrin, “Experimental study of quasistatic brittle crack propagation,”Physical

Review Letters, vol. 75, pp. 2252–5, 1995.
[8] D. Holland and M. Marder, “Cracks and atoms,”Advanced Materials, vol. 11, pp. 793–806, 1999.
[9] L. Slepyan, “Dynamics of a crack in a lattice,”Soviet Physics Doklady, vol. 26, pp. 538–540, 1981.

[10] L. I. Slepyan,Models and Phenomena in Fracture Mechanics. Berlin: Springer, 2002.
[11] M. Marder and S. Gross, “Origin of crack tip instabilities,”Journal of the Mechanics and Physics of

Solids, vol. 43, pp. 1–48, 1995.
[12] D. A. Kessler, “Steady-state cracks in viscoelastic lattice models,”Physical Review E, vol. 59, no. 5,

pp. 5154–5164, 1999.



[13] J. F. Lutsko, “Stress and elastic constants in anisotropic solids: Molecular dynamics techniques,”Journal
of Applied Physics, vol. 64, pp. 1152–1154, 1988.

[14] K. Ravi-Chandar, “Dynamic fracture,” inComprehensive Structural Integrity(I. Milne, R. O. Ritchie, and
B. Karihaloo, eds.), vol. 2, ch. 5, Elsevier, 2003.

[15] B. Yang and K. Ravi-Chandar, “Crack path instabilities in a quenched glass plate,”Journal of the Me-
chanics and Physics of Solids, vol. 49, p. 91, 2001.

[16] M. Marder, “Cracks cleave crystals,”Europhysics Letters, vol. In press, 2004.


